甲基转移酶 SETD3 通过与 hnRNPK 相互作用调节 mRNA 的替代剪接

{"title":"甲基转移酶 SETD3 通过与 hnRNPK 相互作用调节 mRNA 的替代剪接","authors":"","doi":"10.1016/j.cellin.2024.100198","DOIUrl":null,"url":null,"abstract":"<div><div>The methyltransferase SETD3 is an enzyme essential for catalyzing histidine-73 methylation on β-Actin, thereby promoting its polymerization and regulating muscle contraction. Although increasing evidence suggests that SETD3 is involved in multiple physiological or pathological events, its biological functions remain incompletely understood. In this study, we utilize <em>in situ</em> proximity labeling combined with mass spectrometry analysis to detect potential interacting partners of SETD3. Unexpectedly, we find that many splicing factors are associated with SETD3. Genome-wide RNA sequencing reveals that SETD3 regulates pre-mRNA splicing events, predominantly influencing exon skipping. Biochemical and bioinformatic analyses suggest that SETD3 interacts with hnRNPK, and they collaboratively regulate exon skipping in a common subset of genes. Functionally, we demonstrate that SETD3 and hnRNPK are required for retention of exon 7 skipping in the <em>FNIP1</em> gene. This promotes FNIP1-mediated nuclear translocation of the transcription factor TFEB and the subsequent induction of lysosomal and mitochondrial biogenesis. Overall, this study uncovers a novel function of SETD3 in modulating mRNA exon splicing.</div></div>","PeriodicalId":72541,"journal":{"name":"Cell insight","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772892724000531/pdfft?md5=8b6985f58020f0031dd373c4d8c1f1d7&pid=1-s2.0-S2772892724000531-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The methyltransferase SETD3 regulates mRNA alternative splicing through interacting with hnRNPK\",\"authors\":\"\",\"doi\":\"10.1016/j.cellin.2024.100198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The methyltransferase SETD3 is an enzyme essential for catalyzing histidine-73 methylation on β-Actin, thereby promoting its polymerization and regulating muscle contraction. Although increasing evidence suggests that SETD3 is involved in multiple physiological or pathological events, its biological functions remain incompletely understood. In this study, we utilize <em>in situ</em> proximity labeling combined with mass spectrometry analysis to detect potential interacting partners of SETD3. Unexpectedly, we find that many splicing factors are associated with SETD3. Genome-wide RNA sequencing reveals that SETD3 regulates pre-mRNA splicing events, predominantly influencing exon skipping. Biochemical and bioinformatic analyses suggest that SETD3 interacts with hnRNPK, and they collaboratively regulate exon skipping in a common subset of genes. Functionally, we demonstrate that SETD3 and hnRNPK are required for retention of exon 7 skipping in the <em>FNIP1</em> gene. This promotes FNIP1-mediated nuclear translocation of the transcription factor TFEB and the subsequent induction of lysosomal and mitochondrial biogenesis. Overall, this study uncovers a novel function of SETD3 in modulating mRNA exon splicing.</div></div>\",\"PeriodicalId\":72541,\"journal\":{\"name\":\"Cell insight\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772892724000531/pdfft?md5=8b6985f58020f0031dd373c4d8c1f1d7&pid=1-s2.0-S2772892724000531-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell insight\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772892724000531\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell insight","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772892724000531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

甲基转移酶 SETD3 是催化 β-肌动蛋白上组氨酸-73 甲基化,从而促进其聚合并调节肌肉收缩的重要酶。尽管越来越多的证据表明 SETD3 参与了多种生理或病理事件,但对其生物学功能的了解仍不全面。在这项研究中,我们利用原位接近标记结合质谱分析来检测 SETD3 的潜在相互作用伙伴。意外的是,我们发现许多剪接因子都与 SETD3 相关。全基因组 RNA 测序显示,SETD3 可调控前 mRNA 剪接事件,主要影响外显子跳接。生化和生物信息学分析表明,SETD3 与 hnRNPK 相互作用,它们在一个共同的基因子集中共同调控外显子跳转。在功能上,我们证明 SETD3 和 hnRNPK 是保留 FNIP1 基因第 7 外显子跳越的必要条件。这促进了 FNIP1 介导的转录因子 TFEB 的核转位,并随后诱导溶酶体和线粒体的生物生成。总之,这项研究发现了 SETD3 在调节 mRNA 外显子剪接方面的新功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The methyltransferase SETD3 regulates mRNA alternative splicing through interacting with hnRNPK

The methyltransferase SETD3 regulates mRNA alternative splicing through interacting with hnRNPK
The methyltransferase SETD3 is an enzyme essential for catalyzing histidine-73 methylation on β-Actin, thereby promoting its polymerization and regulating muscle contraction. Although increasing evidence suggests that SETD3 is involved in multiple physiological or pathological events, its biological functions remain incompletely understood. In this study, we utilize in situ proximity labeling combined with mass spectrometry analysis to detect potential interacting partners of SETD3. Unexpectedly, we find that many splicing factors are associated with SETD3. Genome-wide RNA sequencing reveals that SETD3 regulates pre-mRNA splicing events, predominantly influencing exon skipping. Biochemical and bioinformatic analyses suggest that SETD3 interacts with hnRNPK, and they collaboratively regulate exon skipping in a common subset of genes. Functionally, we demonstrate that SETD3 and hnRNPK are required for retention of exon 7 skipping in the FNIP1 gene. This promotes FNIP1-mediated nuclear translocation of the transcription factor TFEB and the subsequent induction of lysosomal and mitochondrial biogenesis. Overall, this study uncovers a novel function of SETD3 in modulating mRNA exon splicing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell insight
Cell insight Neuroscience (General), Biochemistry, Genetics and Molecular Biology (General), Cancer Research, Cell Biology
CiteScore
2.70
自引率
0.00%
发文量
0
审稿时长
35 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信