拓扑非互惠有源超材料中从静态到动态机械行为的演变

IF 5 2区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zehuan Tang , Tingfeng Ma , Hui Chen , Yuanwen Gao
{"title":"拓扑非互惠有源超材料中从静态到动态机械行为的演变","authors":"Zehuan Tang ,&nbsp;Tingfeng Ma ,&nbsp;Hui Chen ,&nbsp;Yuanwen Gao","doi":"10.1016/j.jmps.2024.105865","DOIUrl":null,"url":null,"abstract":"<div><div>Based on the Maxwell-Betti theorem, static non-reciprocity has been realized by using nonlinearity, but this non-reciprocity has strict restrictions on input amplitude and structure size (number of units). Here, we propose an active metamaterial with two polarizational components (translation and rotation), which uses active control to add external forces on the units to break reciprocity at the level of the interactions between the units. We show analytically and simulatively that breaking reciprocity at the level of the interactions directly leads to a huge asymmetric response of displacement in a static system, this displacement-specific characteristic not only has no restrictions on size, input amplitude, and suitable geometric asymmetry, but also can be transmitted to rotation by coupling under large deformation. After the evolution from statics to dynamics, asymmetric transmission and unidirectional amplification of vector solitons are both implemented in this system. Our research uncovers the evolution of static non-reciprocity to dynamic non-reciprocity while building a bridge between non-reciprocity physics and soliton science.</div></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"193 ","pages":"Article 105865"},"PeriodicalIF":5.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evolution of static to dynamic mechanical behavior in topological nonreciprocal active metamaterials\",\"authors\":\"Zehuan Tang ,&nbsp;Tingfeng Ma ,&nbsp;Hui Chen ,&nbsp;Yuanwen Gao\",\"doi\":\"10.1016/j.jmps.2024.105865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Based on the Maxwell-Betti theorem, static non-reciprocity has been realized by using nonlinearity, but this non-reciprocity has strict restrictions on input amplitude and structure size (number of units). Here, we propose an active metamaterial with two polarizational components (translation and rotation), which uses active control to add external forces on the units to break reciprocity at the level of the interactions between the units. We show analytically and simulatively that breaking reciprocity at the level of the interactions directly leads to a huge asymmetric response of displacement in a static system, this displacement-specific characteristic not only has no restrictions on size, input amplitude, and suitable geometric asymmetry, but also can be transmitted to rotation by coupling under large deformation. After the evolution from statics to dynamics, asymmetric transmission and unidirectional amplification of vector solitons are both implemented in this system. Our research uncovers the evolution of static non-reciprocity to dynamic non-reciprocity while building a bridge between non-reciprocity physics and soliton science.</div></div>\",\"PeriodicalId\":17331,\"journal\":{\"name\":\"Journal of The Mechanics and Physics of Solids\",\"volume\":\"193 \",\"pages\":\"Article 105865\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Mechanics and Physics of Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022509624003314\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022509624003314","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

基于麦克斯韦尔-贝蒂定理,人们利用非线性实现了静态非互惠性,但这种非互惠性对输入振幅和结构尺寸(单元数量)有严格限制。在这里,我们提出了一种具有两个极化成分(平移和旋转)的主动超材料,它利用主动控制对单元施加外力,从而在单元间的相互作用层面打破互惠性。我们通过分析和模拟证明,在相互作用层面打破互易性会直接导致静态系统产生巨大的位移非对称响应,这种位移特异性不仅不受尺寸、输入振幅和适当几何非对称性的限制,而且还能在大变形条件下通过耦合传递给旋转。从静态演化到动态后,矢量孤子的非对称传输和单向放大均可在该系统中实现。我们的研究揭示了静态非互易到动态非互易的演变过程,同时在非互易物理学和孤子科学之间架起了一座桥梁。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolution of static to dynamic mechanical behavior in topological nonreciprocal active metamaterials
Based on the Maxwell-Betti theorem, static non-reciprocity has been realized by using nonlinearity, but this non-reciprocity has strict restrictions on input amplitude and structure size (number of units). Here, we propose an active metamaterial with two polarizational components (translation and rotation), which uses active control to add external forces on the units to break reciprocity at the level of the interactions between the units. We show analytically and simulatively that breaking reciprocity at the level of the interactions directly leads to a huge asymmetric response of displacement in a static system, this displacement-specific characteristic not only has no restrictions on size, input amplitude, and suitable geometric asymmetry, but also can be transmitted to rotation by coupling under large deformation. After the evolution from statics to dynamics, asymmetric transmission and unidirectional amplification of vector solitons are both implemented in this system. Our research uncovers the evolution of static non-reciprocity to dynamic non-reciprocity while building a bridge between non-reciprocity physics and soliton science.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of The Mechanics and Physics of Solids
Journal of The Mechanics and Physics of Solids 物理-材料科学:综合
CiteScore
9.80
自引率
9.40%
发文量
276
审稿时长
52 days
期刊介绍: The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics. The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics. The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信