浅光学晶格中强相互作用有限玻色系统的相位和相干性

IF 3 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Subhrajyoti Roy , Rhombik Roy , Arnaldo Gammal , Barnali Chakrabarti , Budhaditya Chatterjee
{"title":"浅光学晶格中强相互作用有限玻色系统的相位和相干性","authors":"Subhrajyoti Roy ,&nbsp;Rhombik Roy ,&nbsp;Arnaldo Gammal ,&nbsp;Barnali Chakrabarti ,&nbsp;Budhaditya Chatterjee","doi":"10.1016/j.aop.2024.169807","DOIUrl":null,"url":null,"abstract":"<div><div>We explore the ground states of strongly interacting bosons in the vanishingly small and weak lattices using the multiconfiguration time-dependent Hartree method for bosons (MCTDHB) which calculate numerically exact many-body wave function. Two new many-body phases: fragmented or quasi superfluid (QSF) and incomplete fragmented Mott or quasi Mott insulator (QMI) are emerged due to the strong interplay between short-range contact interaction and lattice depth. Fragmentation is utilized as a figure of merit to distinguish these two new phases. We utilize the eigenvalues of the reduced one-body density matrix and define an order parameter that characterizes the pathway from a very weak lattice to a deep lattice. We provide a detailed investigation through the measures of one- and two-body correlations and information entropy. We find that the structures in one- and two-body coherence are good markers to understand the gradual built-up of intra-well correlation and decay of inter-well correlation with increase in lattice depth. For the dipolar interaction, the many-body features become more distinct and true Mott state can appear even in a shallow lattice. Whereas, for incommensurate fraction of particles, incomplete localization happens that exhibits distinct features in the measure of two-body coherence.</div></div>","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":"470 ","pages":"Article 169807"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phases and coherence of strongly interacting finite bosonic systems in shallow optical lattice\",\"authors\":\"Subhrajyoti Roy ,&nbsp;Rhombik Roy ,&nbsp;Arnaldo Gammal ,&nbsp;Barnali Chakrabarti ,&nbsp;Budhaditya Chatterjee\",\"doi\":\"10.1016/j.aop.2024.169807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We explore the ground states of strongly interacting bosons in the vanishingly small and weak lattices using the multiconfiguration time-dependent Hartree method for bosons (MCTDHB) which calculate numerically exact many-body wave function. Two new many-body phases: fragmented or quasi superfluid (QSF) and incomplete fragmented Mott or quasi Mott insulator (QMI) are emerged due to the strong interplay between short-range contact interaction and lattice depth. Fragmentation is utilized as a figure of merit to distinguish these two new phases. We utilize the eigenvalues of the reduced one-body density matrix and define an order parameter that characterizes the pathway from a very weak lattice to a deep lattice. We provide a detailed investigation through the measures of one- and two-body correlations and information entropy. We find that the structures in one- and two-body coherence are good markers to understand the gradual built-up of intra-well correlation and decay of inter-well correlation with increase in lattice depth. For the dipolar interaction, the many-body features become more distinct and true Mott state can appear even in a shallow lattice. Whereas, for incommensurate fraction of particles, incomplete localization happens that exhibits distinct features in the measure of two-body coherence.</div></div>\",\"PeriodicalId\":8249,\"journal\":{\"name\":\"Annals of Physics\",\"volume\":\"470 \",\"pages\":\"Article 169807\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0003491624002148\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003491624002148","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们利用玻色子的多构型时间相关哈特里方法(MCTDHB)探索了强相互作用玻色子在极小和极弱晶格中的基态,该方法可以数值计算精确的多体波函数。由于短程接触相互作用和晶格深度之间的强烈相互作用,出现了两种新的多体相:碎片或准超流体(QSF)和不完全碎片莫特或准莫特绝缘体(QMI)。碎片被用作区分这两种新相的特征值。我们利用还原单体密度矩阵的特征值,定义了一个阶次参数,该参数描述了从极弱晶格到深晶格的路径。我们通过衡量一体和二体相关性以及信息熵进行了详细研究。我们发现,单体和双体相干性结构是很好的标记,可以用来理解随着晶格深度的增加,晶胞内相关性逐渐增强而晶胞间相关性逐渐减弱的现象。对于双极相互作用,多体特征变得更加明显,即使在浅晶格中也能出现真正的莫特态。而当粒子数量不相称时,会出现不完全局域化,从而在双体相干性测量中表现出明显的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phases and coherence of strongly interacting finite bosonic systems in shallow optical lattice
We explore the ground states of strongly interacting bosons in the vanishingly small and weak lattices using the multiconfiguration time-dependent Hartree method for bosons (MCTDHB) which calculate numerically exact many-body wave function. Two new many-body phases: fragmented or quasi superfluid (QSF) and incomplete fragmented Mott or quasi Mott insulator (QMI) are emerged due to the strong interplay between short-range contact interaction and lattice depth. Fragmentation is utilized as a figure of merit to distinguish these two new phases. We utilize the eigenvalues of the reduced one-body density matrix and define an order parameter that characterizes the pathway from a very weak lattice to a deep lattice. We provide a detailed investigation through the measures of one- and two-body correlations and information entropy. We find that the structures in one- and two-body coherence are good markers to understand the gradual built-up of intra-well correlation and decay of inter-well correlation with increase in lattice depth. For the dipolar interaction, the many-body features become more distinct and true Mott state can appear even in a shallow lattice. Whereas, for incommensurate fraction of particles, incomplete localization happens that exhibits distinct features in the measure of two-body coherence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Physics
Annals of Physics 物理-物理:综合
CiteScore
5.30
自引率
3.30%
发文量
211
审稿时长
47 days
期刊介绍: Annals of Physics presents original work in all areas of basic theoretic physics research. Ideas are developed and fully explored, and thorough treatment is given to first principles and ultimate applications. Annals of Physics emphasizes clarity and intelligibility in the articles it publishes, thus making them as accessible as possible. Readers familiar with recent developments in the field are provided with sufficient detail and background to follow the arguments and understand their significance. The Editors of the journal cover all fields of theoretical physics. Articles published in the journal are typically longer than 20 pages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信