为复杂环境中的人脸配准算法生成的 GAN 合成数据集

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Haoqi Gao , Xing Yang , Yihua Hu , Bingwen Wang , Haoli Xu , Zhenyu Liang , Hua Mu , Yangyang Wang , Yangxiaocao Chen
{"title":"为复杂环境中的人脸配准算法生成的 GAN 合成数据集","authors":"Haoqi Gao ,&nbsp;Xing Yang ,&nbsp;Yihua Hu ,&nbsp;Bingwen Wang ,&nbsp;Haoli Xu ,&nbsp;Zhenyu Liang ,&nbsp;Hua Mu ,&nbsp;Yangyang Wang ,&nbsp;Yangxiaocao Chen","doi":"10.1016/j.asoc.2024.112260","DOIUrl":null,"url":null,"abstract":"<div><div>Face alignment has matured over the past several decades, but privacy violations or data abuse have also triggered global controversy. Moreover, existing face algorithms are still challenging in complex environments. For the question: ”Can synthetic datasets introduce novel variations in real-world data?”. We proposed a new research direction concerning key point detection tasks utilizing synthetic datasets, aiming to reduce the model’s reliance on real-world datasets. Considering the differences between synthetic and real-world data, our work proposed two different transfer ways based on GANs: (1) <span><math><mrow><mi>S</mi><mo>→</mo><mi>R</mi></mrow></math></span> model converts the synthetic face images generated by the Face middleware 3D model (FaceGen) into more realistic face images for training face alignment. (2) <span><math><mrow><mi>R</mi><mo>→</mo><mi>S</mi></mrow></math></span> model converts the real-world face images into a synthetic style image for testing face alignment. Extensive experiments explored the synthetic data complementarity and availability.</div></div>","PeriodicalId":50737,"journal":{"name":"Applied Soft Computing","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GANs-generated synthetic datasets for face alignment algorithms in complex environments\",\"authors\":\"Haoqi Gao ,&nbsp;Xing Yang ,&nbsp;Yihua Hu ,&nbsp;Bingwen Wang ,&nbsp;Haoli Xu ,&nbsp;Zhenyu Liang ,&nbsp;Hua Mu ,&nbsp;Yangyang Wang ,&nbsp;Yangxiaocao Chen\",\"doi\":\"10.1016/j.asoc.2024.112260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Face alignment has matured over the past several decades, but privacy violations or data abuse have also triggered global controversy. Moreover, existing face algorithms are still challenging in complex environments. For the question: ”Can synthetic datasets introduce novel variations in real-world data?”. We proposed a new research direction concerning key point detection tasks utilizing synthetic datasets, aiming to reduce the model’s reliance on real-world datasets. Considering the differences between synthetic and real-world data, our work proposed two different transfer ways based on GANs: (1) <span><math><mrow><mi>S</mi><mo>→</mo><mi>R</mi></mrow></math></span> model converts the synthetic face images generated by the Face middleware 3D model (FaceGen) into more realistic face images for training face alignment. (2) <span><math><mrow><mi>R</mi><mo>→</mo><mi>S</mi></mrow></math></span> model converts the real-world face images into a synthetic style image for testing face alignment. Extensive experiments explored the synthetic data complementarity and availability.</div></div>\",\"PeriodicalId\":50737,\"journal\":{\"name\":\"Applied Soft Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Soft Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1568494624010342\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568494624010342","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在过去的几十年里,人脸配准技术已日趋成熟,但侵犯隐私或滥用数据也引发了全球争议。此外,现有的人脸算法在复杂环境中仍面临挑战。对于这个问题"合成数据集能否在真实世界数据中引入新的变化?我们提出了利用合成数据集进行关键点检测任务的新研究方向,旨在减少模型对真实世界数据集的依赖。考虑到合成数据与真实世界数据之间的差异,我们的工作提出了两种不同的基于 GAN 的传输方式:(1)S→R 模型将人脸中间件三维模型(FaceGen)生成的合成人脸图像转换为更真实的人脸图像,用于训练人脸配准。(2) R→S 模型将现实世界的人脸图像转换成合成风格图像,用于测试人脸配准。大量实验探索了合成数据的互补性和可用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GANs-generated synthetic datasets for face alignment algorithms in complex environments
Face alignment has matured over the past several decades, but privacy violations or data abuse have also triggered global controversy. Moreover, existing face algorithms are still challenging in complex environments. For the question: ”Can synthetic datasets introduce novel variations in real-world data?”. We proposed a new research direction concerning key point detection tasks utilizing synthetic datasets, aiming to reduce the model’s reliance on real-world datasets. Considering the differences between synthetic and real-world data, our work proposed two different transfer ways based on GANs: (1) SR model converts the synthetic face images generated by the Face middleware 3D model (FaceGen) into more realistic face images for training face alignment. (2) RS model converts the real-world face images into a synthetic style image for testing face alignment. Extensive experiments explored the synthetic data complementarity and availability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Soft Computing
Applied Soft Computing 工程技术-计算机:跨学科应用
CiteScore
15.80
自引率
6.90%
发文量
874
审稿时长
10.9 months
期刊介绍: Applied Soft Computing is an international journal promoting an integrated view of soft computing to solve real life problems.The focus is to publish the highest quality research in application and convergence of the areas of Fuzzy Logic, Neural Networks, Evolutionary Computing, Rough Sets and other similar techniques to address real world complexities. Applied Soft Computing is a rolling publication: articles are published as soon as the editor-in-chief has accepted them. Therefore, the web site will continuously be updated with new articles and the publication time will be short.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信