具有相变粘度和真空的不可压缩两相流扩散界面模型的指数稳定性

IF 2.4 2区 数学 Q1 MATHEMATICS
Yinghua Li, Manrou Xie, Yuanxiang Yan
{"title":"具有相变粘度和真空的不可压缩两相流扩散界面模型的指数稳定性","authors":"Yinghua Li,&nbsp;Manrou Xie,&nbsp;Yuanxiang Yan","doi":"10.1016/j.jde.2024.09.036","DOIUrl":null,"url":null,"abstract":"<div><div>This paper is concerned with a simplified model for two-phase fluids with diffuse interface. The model couples the nonhomogeneous incompressible Navier-Stokes equations with the Allen-Cahn equation. The viscosity coefficient is allowed to depend both on the phase variable and on the density. Under some smallness assumptions on initial data, the global existence of unique strong solutions to the 3D Cauchy problem and the initial boundary value problem is established. Meanwhile, we obtain the exponential decay-in-time properties of the solutions. Here, the initial vacuum is allowed and no compatibility conditions are required for the initial data via time weighted techniques.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exponential stability of a diffuse interface model of incompressible two-phase flow with phase variable dependent viscosity and vacuum\",\"authors\":\"Yinghua Li,&nbsp;Manrou Xie,&nbsp;Yuanxiang Yan\",\"doi\":\"10.1016/j.jde.2024.09.036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper is concerned with a simplified model for two-phase fluids with diffuse interface. The model couples the nonhomogeneous incompressible Navier-Stokes equations with the Allen-Cahn equation. The viscosity coefficient is allowed to depend both on the phase variable and on the density. Under some smallness assumptions on initial data, the global existence of unique strong solutions to the 3D Cauchy problem and the initial boundary value problem is established. Meanwhile, we obtain the exponential decay-in-time properties of the solutions. Here, the initial vacuum is allowed and no compatibility conditions are required for the initial data via time weighted techniques.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039624006235\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624006235","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文涉及一种具有扩散界面的两相流体简化模型。该模型将非均质不可压缩纳维-斯托克斯方程与艾伦-卡恩方程耦合在一起。允许粘度系数同时取决于相变量和密度。在初始数据很小的假设条件下,建立了三维 Cauchy 问题和初始边界值问题的唯一强解的全局存在性。同时,我们还得到了解的时间指数衰减特性。在这里,通过时间加权技术,允许初始真空,且不要求初始数据的相容性条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exponential stability of a diffuse interface model of incompressible two-phase flow with phase variable dependent viscosity and vacuum
This paper is concerned with a simplified model for two-phase fluids with diffuse interface. The model couples the nonhomogeneous incompressible Navier-Stokes equations with the Allen-Cahn equation. The viscosity coefficient is allowed to depend both on the phase variable and on the density. Under some smallness assumptions on initial data, the global existence of unique strong solutions to the 3D Cauchy problem and the initial boundary value problem is established. Meanwhile, we obtain the exponential decay-in-time properties of the solutions. Here, the initial vacuum is allowed and no compatibility conditions are required for the initial data via time weighted techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信