铁硫 Rrf2 转录因子:感知压力的新兴多功能平台

IF 5.9 2区 生物学 Q1 MICROBIOLOGY
Rajdeep Banerjee , Isabel Askenasy , Erin L Mettert , Patricia J Kiley
{"title":"铁硫 Rrf2 转录因子:感知压力的新兴多功能平台","authors":"Rajdeep Banerjee ,&nbsp;Isabel Askenasy ,&nbsp;Erin L Mettert ,&nbsp;Patricia J Kiley","doi":"10.1016/j.mib.2024.102543","DOIUrl":null,"url":null,"abstract":"<div><div>The widespread family of Rrf2 transcription factors has emerged as having prominent roles in diverse bacterial functions. These proteins share an overall common structure to sense and respond to stress signals. In many known cases, signaling occurs through iron–sulfur cluster cofactors. Recent research has highlighted distinct characteristics of individual family members that have enabled the Rrf2 family as a whole to sense a diverse array of stresses and subsequently alter gene expression to maintain homeostasis. Here, we review unique traits of four Rrf2 family members (IscR, NsrR, RisR, and RirA), which include iron–sulfur ligation schemes, stress-sensing mechanisms, protein conformation changes, and differential gene regulation, that allow these transcription factors to rapidly respond to environmental cues routinely encountered by bacteria.</div></div>","PeriodicalId":10921,"journal":{"name":"Current opinion in microbiology","volume":"82 ","pages":"Article 102543"},"PeriodicalIF":5.9000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Iron–sulfur Rrf2 transcription factors: an emerging versatile platform for sensing stress\",\"authors\":\"Rajdeep Banerjee ,&nbsp;Isabel Askenasy ,&nbsp;Erin L Mettert ,&nbsp;Patricia J Kiley\",\"doi\":\"10.1016/j.mib.2024.102543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The widespread family of Rrf2 transcription factors has emerged as having prominent roles in diverse bacterial functions. These proteins share an overall common structure to sense and respond to stress signals. In many known cases, signaling occurs through iron–sulfur cluster cofactors. Recent research has highlighted distinct characteristics of individual family members that have enabled the Rrf2 family as a whole to sense a diverse array of stresses and subsequently alter gene expression to maintain homeostasis. Here, we review unique traits of four Rrf2 family members (IscR, NsrR, RisR, and RirA), which include iron–sulfur ligation schemes, stress-sensing mechanisms, protein conformation changes, and differential gene regulation, that allow these transcription factors to rapidly respond to environmental cues routinely encountered by bacteria.</div></div>\",\"PeriodicalId\":10921,\"journal\":{\"name\":\"Current opinion in microbiology\",\"volume\":\"82 \",\"pages\":\"Article 102543\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S136952742400119X\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in microbiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S136952742400119X","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

广泛存在的 Rrf2 转录因子家族在细菌的多种功能中发挥着重要作用。这些蛋白质具有共同的整体结构,能够感知和响应压力信号。在许多已知的情况下,信号是通过铁硫簇辅助因子传递的。最近的研究突显了单个家族成员的独特特征,这些特征使 Rrf2 家族作为一个整体能够感知一系列不同的应激,并随之改变基因表达以维持平衡。在此,我们回顾了四个 Rrf2 家族成员(IscR、NsrR、RisR 和 RirA)的独特特征,其中包括铁硫连接方案、压力感应机制、蛋白质构象变化和不同的基因调控,这些特征使这些转录因子能够对细菌经常遇到的环境线索做出快速反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Iron–sulfur Rrf2 transcription factors: an emerging versatile platform for sensing stress
The widespread family of Rrf2 transcription factors has emerged as having prominent roles in diverse bacterial functions. These proteins share an overall common structure to sense and respond to stress signals. In many known cases, signaling occurs through iron–sulfur cluster cofactors. Recent research has highlighted distinct characteristics of individual family members that have enabled the Rrf2 family as a whole to sense a diverse array of stresses and subsequently alter gene expression to maintain homeostasis. Here, we review unique traits of four Rrf2 family members (IscR, NsrR, RisR, and RirA), which include iron–sulfur ligation schemes, stress-sensing mechanisms, protein conformation changes, and differential gene regulation, that allow these transcription factors to rapidly respond to environmental cues routinely encountered by bacteria.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current opinion in microbiology
Current opinion in microbiology 生物-微生物学
CiteScore
10.00
自引率
0.00%
发文量
114
审稿时长
6-12 weeks
期刊介绍: Current Opinion in Microbiology is a systematic review journal that aims to provide specialists with a unique and educational platform to keep up-to-date with the expanding volume of information published in the field of microbiology. It consists of 6 issues per year covering the following 11 sections, each of which is reviewed once a year: Host-microbe interactions: bacteria Cell regulation Environmental microbiology Host-microbe interactions: fungi/parasites/viruses Antimicrobials Microbial systems biology Growth and development: eukaryotes/prokaryotes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信