Noura Zarzour , Maria Paola Santisi d’Avila , E. Diego Mercerat , Luca Lenti , Michel Oggero
{"title":"用就地生产的压缩土块建造低碳建筑的抗震设计","authors":"Noura Zarzour , Maria Paola Santisi d’Avila , E. Diego Mercerat , Luca Lenti , Michel Oggero","doi":"10.1016/j.soildyn.2024.108990","DOIUrl":null,"url":null,"abstract":"<div><div>The seismic design of buildings erected using new low-carbon construction materials needs the development of a reliable methodology. In this research, a pilot project of a compressed earth block (CEB) masonry building in a medium-high seismic hazard zone in Southern France is developed. The CEBs are produced in-situ, using a machine, and are used as construction material for low-rise masonry buildings. This innovative low-carbon construction technology permits the reuse of local soil, removed during earthworks, with consequent reduction of energy consumption related to its collection, transport, recovery, and disposal. Even if the CEB masonry building is a promising low-carbon construction, its structural performance assessment, especially in seismic zones, is a challenging issue.</div><div>Starting from the experimental characterization of material mechanical parameters, the seismic design approach focuses on the modal characteristics of the structure, the expected building ductility, and seismic performance assessment in terms of both displacement and force. The behavior factor for a CEB masonry building is an original result of this research. The equivalent frame model adopted for structural design of load-bearing masonry is validated, after the building construction, by comparing the dynamic properties obtained by both numerical and operational modal analysis. Moreover, the modal analysis highlights the impact of the timber slab stiffness on the dynamic response of masonry buildings and suggests that a careful timber slab conception improves the structural behavior under seismic loading.</div></div>","PeriodicalId":49502,"journal":{"name":"Soil Dynamics and Earthquake Engineering","volume":"187 ","pages":"Article 108990"},"PeriodicalIF":4.2000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seismic design of a low-carbon building constructed with in-situ produced compressed earth blocks\",\"authors\":\"Noura Zarzour , Maria Paola Santisi d’Avila , E. Diego Mercerat , Luca Lenti , Michel Oggero\",\"doi\":\"10.1016/j.soildyn.2024.108990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The seismic design of buildings erected using new low-carbon construction materials needs the development of a reliable methodology. In this research, a pilot project of a compressed earth block (CEB) masonry building in a medium-high seismic hazard zone in Southern France is developed. The CEBs are produced in-situ, using a machine, and are used as construction material for low-rise masonry buildings. This innovative low-carbon construction technology permits the reuse of local soil, removed during earthworks, with consequent reduction of energy consumption related to its collection, transport, recovery, and disposal. Even if the CEB masonry building is a promising low-carbon construction, its structural performance assessment, especially in seismic zones, is a challenging issue.</div><div>Starting from the experimental characterization of material mechanical parameters, the seismic design approach focuses on the modal characteristics of the structure, the expected building ductility, and seismic performance assessment in terms of both displacement and force. The behavior factor for a CEB masonry building is an original result of this research. The equivalent frame model adopted for structural design of load-bearing masonry is validated, after the building construction, by comparing the dynamic properties obtained by both numerical and operational modal analysis. Moreover, the modal analysis highlights the impact of the timber slab stiffness on the dynamic response of masonry buildings and suggests that a careful timber slab conception improves the structural behavior under seismic loading.</div></div>\",\"PeriodicalId\":49502,\"journal\":{\"name\":\"Soil Dynamics and Earthquake Engineering\",\"volume\":\"187 \",\"pages\":\"Article 108990\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil Dynamics and Earthquake Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0267726124005426\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Dynamics and Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0267726124005426","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Seismic design of a low-carbon building constructed with in-situ produced compressed earth blocks
The seismic design of buildings erected using new low-carbon construction materials needs the development of a reliable methodology. In this research, a pilot project of a compressed earth block (CEB) masonry building in a medium-high seismic hazard zone in Southern France is developed. The CEBs are produced in-situ, using a machine, and are used as construction material for low-rise masonry buildings. This innovative low-carbon construction technology permits the reuse of local soil, removed during earthworks, with consequent reduction of energy consumption related to its collection, transport, recovery, and disposal. Even if the CEB masonry building is a promising low-carbon construction, its structural performance assessment, especially in seismic zones, is a challenging issue.
Starting from the experimental characterization of material mechanical parameters, the seismic design approach focuses on the modal characteristics of the structure, the expected building ductility, and seismic performance assessment in terms of both displacement and force. The behavior factor for a CEB masonry building is an original result of this research. The equivalent frame model adopted for structural design of load-bearing masonry is validated, after the building construction, by comparing the dynamic properties obtained by both numerical and operational modal analysis. Moreover, the modal analysis highlights the impact of the timber slab stiffness on the dynamic response of masonry buildings and suggests that a careful timber slab conception improves the structural behavior under seismic loading.
期刊介绍:
The journal aims to encourage and enhance the role of mechanics and other disciplines as they relate to earthquake engineering by providing opportunities for the publication of the work of applied mathematicians, engineers and other applied scientists involved in solving problems closely related to the field of earthquake engineering and geotechnical earthquake engineering.
Emphasis is placed on new concepts and techniques, but case histories will also be published if they enhance the presentation and understanding of new technical concepts.