利用人工智能设计非凡的日间辐射冷却材料

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS
Quang-Tuyen Le , Sih-Wei Chang , Bo-Ying Chen , Huyen-Anh Phan , An-Chen Yang , Fu-Hsiang Ko , Hsueh-Cheng Wang , Nan-Yow Chen , Hsuen-Li Chen , Dehui Wan , Yu-Chieh Lo
{"title":"利用人工智能设计非凡的日间辐射冷却材料","authors":"Quang-Tuyen Le ,&nbsp;Sih-Wei Chang ,&nbsp;Bo-Ying Chen ,&nbsp;Huyen-Anh Phan ,&nbsp;An-Chen Yang ,&nbsp;Fu-Hsiang Ko ,&nbsp;Hsueh-Cheng Wang ,&nbsp;Nan-Yow Chen ,&nbsp;Hsuen-Li Chen ,&nbsp;Dehui Wan ,&nbsp;Yu-Chieh Lo","doi":"10.1016/j.solmat.2024.113177","DOIUrl":null,"url":null,"abstract":"<div><div>Here we developed an artificial intelligence (AI)–based deep generative model, combined with a one-dimensional convolutional neural network (1D-CNN), for the inverse design of extraordinary passive daytime radiative cooling (PDRC) materials in a probabilistic manner. This AI-enabled strategy delivered a comprehensive solution for the one-to-many mapping problem of inverse design by predicting the optical properties—specifically, the refractive index (n) and extinction coefficient (k)—of hypothetical new materials. We then used the Kramers–Kronig relations and Lorentz–Drude model to validate the predicted results, and discovered a new record-breaking PDRC material that provided a decrease of approximately 79 K relative to ambient temperature and of approximately 12 K relative to that provided by the conventional ideal selective emitter under conditions of perfect insulation and a perfect electric conductor substrate. This AI-extrapolated approach toward extraordinary PDRC materials provides new guidelines for designing PDRC materials and connects the gap between ideal selective emitters and real materials.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"278 ","pages":"Article 113177"},"PeriodicalIF":6.3000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI-enabled design of extraordinary daytime radiative cooling materials\",\"authors\":\"Quang-Tuyen Le ,&nbsp;Sih-Wei Chang ,&nbsp;Bo-Ying Chen ,&nbsp;Huyen-Anh Phan ,&nbsp;An-Chen Yang ,&nbsp;Fu-Hsiang Ko ,&nbsp;Hsueh-Cheng Wang ,&nbsp;Nan-Yow Chen ,&nbsp;Hsuen-Li Chen ,&nbsp;Dehui Wan ,&nbsp;Yu-Chieh Lo\",\"doi\":\"10.1016/j.solmat.2024.113177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Here we developed an artificial intelligence (AI)–based deep generative model, combined with a one-dimensional convolutional neural network (1D-CNN), for the inverse design of extraordinary passive daytime radiative cooling (PDRC) materials in a probabilistic manner. This AI-enabled strategy delivered a comprehensive solution for the one-to-many mapping problem of inverse design by predicting the optical properties—specifically, the refractive index (n) and extinction coefficient (k)—of hypothetical new materials. We then used the Kramers–Kronig relations and Lorentz–Drude model to validate the predicted results, and discovered a new record-breaking PDRC material that provided a decrease of approximately 79 K relative to ambient temperature and of approximately 12 K relative to that provided by the conventional ideal selective emitter under conditions of perfect insulation and a perfect electric conductor substrate. This AI-extrapolated approach toward extraordinary PDRC materials provides new guidelines for designing PDRC materials and connects the gap between ideal selective emitters and real materials.</div></div>\",\"PeriodicalId\":429,\"journal\":{\"name\":\"Solar Energy Materials and Solar Cells\",\"volume\":\"278 \",\"pages\":\"Article 113177\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy Materials and Solar Cells\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927024824004896\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024824004896","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

在此,我们开发了一种基于人工智能(AI)的深度生成模型,并将其与一维卷积神经网络(1D-CNN)相结合,以概率方式对非凡的被动日间辐射冷却(PDRC)材料进行逆向设计。通过预测假定新材料的光学特性,特别是折射率(n)和消光系数(k),这一人工智能战略为反向设计中的一对多映射问题提供了全面的解决方案。然后,我们使用克雷默-克罗尼格关系和洛伦兹-德鲁德模型来验证预测结果,并发现了一种创纪录的新型 PDRC 材料,在完美绝缘和完美电导体基底的条件下,该材料的温度相对于环境温度降低了约 79 K,相对于传统理想选择性发射器降低了约 12 K。这种通过人工智能推导出的非凡 PDRC 材料为设计 PDRC 材料提供了新的指导,并缩小了理想选择性发射器与实际材料之间的差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AI-enabled design of extraordinary daytime radiative cooling materials
Here we developed an artificial intelligence (AI)–based deep generative model, combined with a one-dimensional convolutional neural network (1D-CNN), for the inverse design of extraordinary passive daytime radiative cooling (PDRC) materials in a probabilistic manner. This AI-enabled strategy delivered a comprehensive solution for the one-to-many mapping problem of inverse design by predicting the optical properties—specifically, the refractive index (n) and extinction coefficient (k)—of hypothetical new materials. We then used the Kramers–Kronig relations and Lorentz–Drude model to validate the predicted results, and discovered a new record-breaking PDRC material that provided a decrease of approximately 79 K relative to ambient temperature and of approximately 12 K relative to that provided by the conventional ideal selective emitter under conditions of perfect insulation and a perfect electric conductor substrate. This AI-extrapolated approach toward extraordinary PDRC materials provides new guidelines for designing PDRC materials and connects the gap between ideal selective emitters and real materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信