在硅异质结太阳能电池中应用过渡金属氧化物的通用界面工程方法

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS
Liqi Cao, Paul Procel, Yifeng Zhao, Jin Yan, Engin Özkol, Katarina Kovačević, Miro Zeman, Luana Mazzarella, Olindo Isabella
{"title":"在硅异质结太阳能电池中应用过渡金属氧化物的通用界面工程方法","authors":"Liqi Cao,&nbsp;Paul Procel,&nbsp;Yifeng Zhao,&nbsp;Jin Yan,&nbsp;Engin Özkol,&nbsp;Katarina Kovačević,&nbsp;Miro Zeman,&nbsp;Luana Mazzarella,&nbsp;Olindo Isabella","doi":"10.1016/j.solmat.2024.113170","DOIUrl":null,"url":null,"abstract":"<div><div>Transition metal oxide (TMO) thin films exhibit large bandgap and hold great potential for enhancing the performance of silicon heterojunction (SHJ) solar cells by increasing the short-circuit current density significantly. On the other hand, achieving precise control over the electrical properties of TMO layers is crucial for optimizing their function as efficient carrier-selective layer. This study demonstrates a general and feasible approach for manipulating the quality of several TMO films, aimed at enhancing their applicability in silicon heterojunction (SHJ) solar cells. The core of our method involves precise engineering of the interface between the TMO film and the underlying hydrogenated intrinsic amorphous silicon passivation layer by managing the reaction of the TMO on the surface. X-ray photoelectron spectroscopy spectra demonstrate that our methods can modify the oxygen content in TMO films, thereby adjusting their electronic properties. By applying this method, we have successfully fabricated WO<sub>x</sub>-based SHJ solar cells with 23.30 % conversion efficiency and V<sub>2</sub>O<sub>x</sub>-based SHJ solar cells with 22.04 % conversion efficiency, while keeping <em>n</em>-type silicon-based electron-transport layer at the rear side. This research paves the way for extending such interface engineering methods to other TMO materials used as hole-transport layers in SHJ solar cells.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"278 ","pages":"Article 113170"},"PeriodicalIF":6.3000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0927024824004823/pdfft?md5=dc20506f94cacdce80343f4d434389d9&pid=1-s2.0-S0927024824004823-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Universal interface engineering method for applying transition metal oxides in silicon heterojunction solar cell\",\"authors\":\"Liqi Cao,&nbsp;Paul Procel,&nbsp;Yifeng Zhao,&nbsp;Jin Yan,&nbsp;Engin Özkol,&nbsp;Katarina Kovačević,&nbsp;Miro Zeman,&nbsp;Luana Mazzarella,&nbsp;Olindo Isabella\",\"doi\":\"10.1016/j.solmat.2024.113170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Transition metal oxide (TMO) thin films exhibit large bandgap and hold great potential for enhancing the performance of silicon heterojunction (SHJ) solar cells by increasing the short-circuit current density significantly. On the other hand, achieving precise control over the electrical properties of TMO layers is crucial for optimizing their function as efficient carrier-selective layer. This study demonstrates a general and feasible approach for manipulating the quality of several TMO films, aimed at enhancing their applicability in silicon heterojunction (SHJ) solar cells. The core of our method involves precise engineering of the interface between the TMO film and the underlying hydrogenated intrinsic amorphous silicon passivation layer by managing the reaction of the TMO on the surface. X-ray photoelectron spectroscopy spectra demonstrate that our methods can modify the oxygen content in TMO films, thereby adjusting their electronic properties. By applying this method, we have successfully fabricated WO<sub>x</sub>-based SHJ solar cells with 23.30 % conversion efficiency and V<sub>2</sub>O<sub>x</sub>-based SHJ solar cells with 22.04 % conversion efficiency, while keeping <em>n</em>-type silicon-based electron-transport layer at the rear side. This research paves the way for extending such interface engineering methods to other TMO materials used as hole-transport layers in SHJ solar cells.</div></div>\",\"PeriodicalId\":429,\"journal\":{\"name\":\"Solar Energy Materials and Solar Cells\",\"volume\":\"278 \",\"pages\":\"Article 113170\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0927024824004823/pdfft?md5=dc20506f94cacdce80343f4d434389d9&pid=1-s2.0-S0927024824004823-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy Materials and Solar Cells\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927024824004823\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024824004823","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

过渡金属氧化物(TMO)薄膜具有较大的带隙,可显著提高短路电流密度,在增强硅异质结太阳能电池性能方面具有巨大潜力。另一方面,实现对 TMO 层电学特性的精确控制对于优化其作为高效载流子选择层的功能至关重要。本研究展示了一种操纵多种 TMO 膜质量的通用可行方法,旨在提高它们在硅异质结 (SHJ) 太阳能电池中的适用性。我们方法的核心是通过管理 TMO 在表面上的反应,对 TMO 薄膜与底层氢化本征非晶硅钝化层之间的界面进行精确设计。X 射线光电子能谱光谱显示,我们的方法可以改变 TMO 薄膜中的氧含量,从而调整其电子特性。通过应用这种方法,我们成功制备了转换效率为 23.30% 的 WOx 基 SHJ 太阳能电池和转换效率为 22.04% 的 V2Ox 基 SHJ 太阳能电池,同时在后侧保留了 n 型硅基电子传输层。这项研究为将这种界面工程方法推广到 SHJ 太阳能电池中用作空穴传输层的其他 TMO 材料铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Universal interface engineering method for applying transition metal oxides in silicon heterojunction solar cell
Transition metal oxide (TMO) thin films exhibit large bandgap and hold great potential for enhancing the performance of silicon heterojunction (SHJ) solar cells by increasing the short-circuit current density significantly. On the other hand, achieving precise control over the electrical properties of TMO layers is crucial for optimizing their function as efficient carrier-selective layer. This study demonstrates a general and feasible approach for manipulating the quality of several TMO films, aimed at enhancing their applicability in silicon heterojunction (SHJ) solar cells. The core of our method involves precise engineering of the interface between the TMO film and the underlying hydrogenated intrinsic amorphous silicon passivation layer by managing the reaction of the TMO on the surface. X-ray photoelectron spectroscopy spectra demonstrate that our methods can modify the oxygen content in TMO films, thereby adjusting their electronic properties. By applying this method, we have successfully fabricated WOx-based SHJ solar cells with 23.30 % conversion efficiency and V2Ox-based SHJ solar cells with 22.04 % conversion efficiency, while keeping n-type silicon-based electron-transport layer at the rear side. This research paves the way for extending such interface engineering methods to other TMO materials used as hole-transport layers in SHJ solar cells.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信