表面四阶界面问题的混合沉浸式有限元法

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Jiaqi Chen, Xufeng Xiao, Xinlong Feng
{"title":"表面四阶界面问题的混合沉浸式有限元法","authors":"Jiaqi Chen,&nbsp;Xufeng Xiao,&nbsp;Xinlong Feng","doi":"10.1016/j.camwa.2024.09.012","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents the first numerical attempt on fourth-order interface problems on surfaces. A mixed immersed surface finite element method based on Ciarlet-Raviart formulation is proposed for solving the problem with three types of boundary conditions. One important advantage of this method is that it can avoid the generation of complex body-fitting surface meshes. The immersed surface finite element space is given based on the mixed formulation. By modifying the representation of numerical solutions, the method is extended to solve the fourth-order interface problem with nonhomogeneous flux jump conditions. Numerical examples are given to illustrate the capabilities of the proposed method.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A mixed immersed finite element method for fourth-order interface problems on surfaces\",\"authors\":\"Jiaqi Chen,&nbsp;Xufeng Xiao,&nbsp;Xinlong Feng\",\"doi\":\"10.1016/j.camwa.2024.09.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents the first numerical attempt on fourth-order interface problems on surfaces. A mixed immersed surface finite element method based on Ciarlet-Raviart formulation is proposed for solving the problem with three types of boundary conditions. One important advantage of this method is that it can avoid the generation of complex body-fitting surface meshes. The immersed surface finite element space is given based on the mixed formulation. By modifying the representation of numerical solutions, the method is extended to solve the fourth-order interface problem with nonhomogeneous flux jump conditions. Numerical examples are given to illustrate the capabilities of the proposed method.</div></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S089812212400422X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089812212400422X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文首次尝试对表面的四阶界面问题进行数值计算。本文提出了一种基于 Ciarlet-Raviart 公式的混合沉浸表面有限元方法,用于求解具有三种边界条件的问题。这种方法的一个重要优点是可以避免生成复杂的体拟合表面网格。根据混合公式给出了沉入式表面有限元空间。通过修改数值解的表示方法,该方法被扩展用于解决具有非均质通量跳跃条件的四阶界面问题。给出的数值示例说明了所提方法的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A mixed immersed finite element method for fourth-order interface problems on surfaces
This paper presents the first numerical attempt on fourth-order interface problems on surfaces. A mixed immersed surface finite element method based on Ciarlet-Raviart formulation is proposed for solving the problem with three types of boundary conditions. One important advantage of this method is that it can avoid the generation of complex body-fitting surface meshes. The immersed surface finite element space is given based on the mixed formulation. By modifying the representation of numerical solutions, the method is extended to solve the fourth-order interface problem with nonhomogeneous flux jump conditions. Numerical examples are given to illustrate the capabilities of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信