I 型非紧密李群的局部解析扭转和相对解析扭转

IF 1.7 2区 数学 Q1 MATHEMATICS
A. Della Vedova , M. Spreafico
{"title":"I 型非紧密李群的局部解析扭转和相对解析扭转","authors":"A. Della Vedova ,&nbsp;M. Spreafico","doi":"10.1016/j.jfa.2024.110687","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>G</em> be a (non compact) connected, simply connected, locally compact, second countable Lie group, either abelian or unimodular of type I, and let <em>ρ</em> be an irreducible unitary representation of <em>G</em>. Then, we define the analytic torsion of <em>G</em> localised at the representation <em>ρ</em>. The idea of considering localised invariants is due to Brodzki, Niblo, Plymen and Wright <span><span>[5]</span></span>, and was exploited in <span><span>[31]</span></span> to define a localised eta function. Next, let Γ be a discrete co compact subgroup of <em>G</em>. We use the localised analytic torsion to define the relative analytic torsion of the pair <span><math><mo>(</mo><mi>G</mi><mo>,</mo><mi>Γ</mi><mo>)</mo></math></span>, and we prove that the last coincides with the Lott <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> analytic torsion of a covering space. We illustrate these constructions analysing in some details two examples: the abelian case, and the case <span><math><mi>G</mi><mo>=</mo><mi>H</mi></math></span>, the Heisenberg group.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 2","pages":"Article 110687"},"PeriodicalIF":1.7000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022123624003756/pdfft?md5=c742e607db225a998b538621bbeaade9&pid=1-s2.0-S0022123624003756-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Localised analytic torsion and relative analytic torsion for non compact Lie groups of type I\",\"authors\":\"A. Della Vedova ,&nbsp;M. Spreafico\",\"doi\":\"10.1016/j.jfa.2024.110687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>G</em> be a (non compact) connected, simply connected, locally compact, second countable Lie group, either abelian or unimodular of type I, and let <em>ρ</em> be an irreducible unitary representation of <em>G</em>. Then, we define the analytic torsion of <em>G</em> localised at the representation <em>ρ</em>. The idea of considering localised invariants is due to Brodzki, Niblo, Plymen and Wright <span><span>[5]</span></span>, and was exploited in <span><span>[31]</span></span> to define a localised eta function. Next, let Γ be a discrete co compact subgroup of <em>G</em>. We use the localised analytic torsion to define the relative analytic torsion of the pair <span><math><mo>(</mo><mi>G</mi><mo>,</mo><mi>Γ</mi><mo>)</mo></math></span>, and we prove that the last coincides with the Lott <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> analytic torsion of a covering space. We illustrate these constructions analysing in some details two examples: the abelian case, and the case <span><math><mi>G</mi><mo>=</mo><mi>H</mi></math></span>, the Heisenberg group.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"288 2\",\"pages\":\"Article 110687\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022123624003756/pdfft?md5=c742e607db225a998b538621bbeaade9&pid=1-s2.0-S0022123624003756-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123624003756\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624003756","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 G 是一个(非紧凑)连通的、简单连通的、局部紧凑的、第二可数李群,是 I 型的非等边或单模态,让 ρ 是 G 的一个不可还原的单元表示。接下来,让 Γ 成为 G 的离散协紧凑子群。我们使用局部化解析扭转来定义一对 (G,Γ) 的相对解析扭转,并证明最后一个解析扭转与覆盖空间的 Lott L2 解析扭转重合。我们以两个例子详细分析了这些构造:非等边情况和海森堡群 G=H 的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Localised analytic torsion and relative analytic torsion for non compact Lie groups of type I
Let G be a (non compact) connected, simply connected, locally compact, second countable Lie group, either abelian or unimodular of type I, and let ρ be an irreducible unitary representation of G. Then, we define the analytic torsion of G localised at the representation ρ. The idea of considering localised invariants is due to Brodzki, Niblo, Plymen and Wright [5], and was exploited in [31] to define a localised eta function. Next, let Γ be a discrete co compact subgroup of G. We use the localised analytic torsion to define the relative analytic torsion of the pair (G,Γ), and we prove that the last coincides with the Lott L2 analytic torsion of a covering space. We illustrate these constructions analysing in some details two examples: the abelian case, and the case G=H, the Heisenberg group.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信