{"title":"I 型非紧密李群的局部解析扭转和相对解析扭转","authors":"A. Della Vedova , M. Spreafico","doi":"10.1016/j.jfa.2024.110687","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>G</em> be a (non compact) connected, simply connected, locally compact, second countable Lie group, either abelian or unimodular of type I, and let <em>ρ</em> be an irreducible unitary representation of <em>G</em>. Then, we define the analytic torsion of <em>G</em> localised at the representation <em>ρ</em>. The idea of considering localised invariants is due to Brodzki, Niblo, Plymen and Wright <span><span>[5]</span></span>, and was exploited in <span><span>[31]</span></span> to define a localised eta function. Next, let Γ be a discrete co compact subgroup of <em>G</em>. We use the localised analytic torsion to define the relative analytic torsion of the pair <span><math><mo>(</mo><mi>G</mi><mo>,</mo><mi>Γ</mi><mo>)</mo></math></span>, and we prove that the last coincides with the Lott <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> analytic torsion of a covering space. We illustrate these constructions analysing in some details two examples: the abelian case, and the case <span><math><mi>G</mi><mo>=</mo><mi>H</mi></math></span>, the Heisenberg group.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 2","pages":"Article 110687"},"PeriodicalIF":1.7000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022123624003756/pdfft?md5=c742e607db225a998b538621bbeaade9&pid=1-s2.0-S0022123624003756-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Localised analytic torsion and relative analytic torsion for non compact Lie groups of type I\",\"authors\":\"A. Della Vedova , M. Spreafico\",\"doi\":\"10.1016/j.jfa.2024.110687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>G</em> be a (non compact) connected, simply connected, locally compact, second countable Lie group, either abelian or unimodular of type I, and let <em>ρ</em> be an irreducible unitary representation of <em>G</em>. Then, we define the analytic torsion of <em>G</em> localised at the representation <em>ρ</em>. The idea of considering localised invariants is due to Brodzki, Niblo, Plymen and Wright <span><span>[5]</span></span>, and was exploited in <span><span>[31]</span></span> to define a localised eta function. Next, let Γ be a discrete co compact subgroup of <em>G</em>. We use the localised analytic torsion to define the relative analytic torsion of the pair <span><math><mo>(</mo><mi>G</mi><mo>,</mo><mi>Γ</mi><mo>)</mo></math></span>, and we prove that the last coincides with the Lott <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> analytic torsion of a covering space. We illustrate these constructions analysing in some details two examples: the abelian case, and the case <span><math><mi>G</mi><mo>=</mo><mi>H</mi></math></span>, the Heisenberg group.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"288 2\",\"pages\":\"Article 110687\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022123624003756/pdfft?md5=c742e607db225a998b538621bbeaade9&pid=1-s2.0-S0022123624003756-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123624003756\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624003756","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
让 G 是一个(非紧凑)连通的、简单连通的、局部紧凑的、第二可数李群,是 I 型的非等边或单模态,让 ρ 是 G 的一个不可还原的单元表示。接下来,让 Γ 成为 G 的离散协紧凑子群。我们使用局部化解析扭转来定义一对 (G,Γ) 的相对解析扭转,并证明最后一个解析扭转与覆盖空间的 Lott L2 解析扭转重合。我们以两个例子详细分析了这些构造:非等边情况和海森堡群 G=H 的情况。
Localised analytic torsion and relative analytic torsion for non compact Lie groups of type I
Let G be a (non compact) connected, simply connected, locally compact, second countable Lie group, either abelian or unimodular of type I, and let ρ be an irreducible unitary representation of G. Then, we define the analytic torsion of G localised at the representation ρ. The idea of considering localised invariants is due to Brodzki, Niblo, Plymen and Wright [5], and was exploited in [31] to define a localised eta function. Next, let Γ be a discrete co compact subgroup of G. We use the localised analytic torsion to define the relative analytic torsion of the pair , and we prove that the last coincides with the Lott analytic torsion of a covering space. We illustrate these constructions analysing in some details two examples: the abelian case, and the case , the Heisenberg group.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis