希尔伯特空间中的下协迫性

IF 1.7 2区 数学 Q1 MATHEMATICS
F. Achleitner , A. Arnold , V. Mehrmann , E.A. Nigsch
{"title":"希尔伯特空间中的下协迫性","authors":"F. Achleitner ,&nbsp;A. Arnold ,&nbsp;V. Mehrmann ,&nbsp;E.A. Nigsch","doi":"10.1016/j.jfa.2024.110691","DOIUrl":null,"url":null,"abstract":"<div><div>The concept of hypocoercivity for linear evolution equations with dissipation is discussed and equivalent characterizations that were developed for the finite-dimensional case are extended to separable Hilbert spaces. Using the concept of a hypocoercivity index, quantitative estimates on the short-time and long-time decay behavior of a hypocoercive system are derived. As a useful tool for analyzing the structural properties, an infinite-dimensional staircase form is also derived and connections to linear systems and control theory are presented. Several examples illustrate the new concepts and the results are applied to the Lorentz kinetic equation.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 2","pages":"Article 110691"},"PeriodicalIF":1.7000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022123624003793/pdfft?md5=e2463e2bf7ceee0363d431fdcb34ac65&pid=1-s2.0-S0022123624003793-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Hypocoercivity in Hilbert spaces\",\"authors\":\"F. Achleitner ,&nbsp;A. Arnold ,&nbsp;V. Mehrmann ,&nbsp;E.A. Nigsch\",\"doi\":\"10.1016/j.jfa.2024.110691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The concept of hypocoercivity for linear evolution equations with dissipation is discussed and equivalent characterizations that were developed for the finite-dimensional case are extended to separable Hilbert spaces. Using the concept of a hypocoercivity index, quantitative estimates on the short-time and long-time decay behavior of a hypocoercive system are derived. As a useful tool for analyzing the structural properties, an infinite-dimensional staircase form is also derived and connections to linear systems and control theory are presented. Several examples illustrate the new concepts and the results are applied to the Lorentz kinetic equation.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"288 2\",\"pages\":\"Article 110691\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022123624003793/pdfft?md5=e2463e2bf7ceee0363d431fdcb34ac65&pid=1-s2.0-S0022123624003793-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123624003793\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624003793","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了具有耗散的线性演化方程的次协迫性概念,并将有限维情况下的等效特征扩展到可分离的希尔伯特空间。利用超矫顽力指数的概念,得出了对超矫顽力系统的短时和长时衰减行为的定量估计。作为分析结构特性的有用工具,还导出了无穷维楼梯形式,并介绍了与线性系统和控制理论的联系。几个例子说明了新概念,并将结果应用于洛伦兹动力学方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hypocoercivity in Hilbert spaces
The concept of hypocoercivity for linear evolution equations with dissipation is discussed and equivalent characterizations that were developed for the finite-dimensional case are extended to separable Hilbert spaces. Using the concept of a hypocoercivity index, quantitative estimates on the short-time and long-time decay behavior of a hypocoercive system are derived. As a useful tool for analyzing the structural properties, an infinite-dimensional staircase form is also derived and connections to linear systems and control theory are presented. Several examples illustrate the new concepts and the results are applied to the Lorentz kinetic equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信