F. Achleitner , A. Arnold , V. Mehrmann , E.A. Nigsch
{"title":"希尔伯特空间中的下协迫性","authors":"F. Achleitner , A. Arnold , V. Mehrmann , E.A. Nigsch","doi":"10.1016/j.jfa.2024.110691","DOIUrl":null,"url":null,"abstract":"<div><div>The concept of hypocoercivity for linear evolution equations with dissipation is discussed and equivalent characterizations that were developed for the finite-dimensional case are extended to separable Hilbert spaces. Using the concept of a hypocoercivity index, quantitative estimates on the short-time and long-time decay behavior of a hypocoercive system are derived. As a useful tool for analyzing the structural properties, an infinite-dimensional staircase form is also derived and connections to linear systems and control theory are presented. Several examples illustrate the new concepts and the results are applied to the Lorentz kinetic equation.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022123624003793/pdfft?md5=e2463e2bf7ceee0363d431fdcb34ac65&pid=1-s2.0-S0022123624003793-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Hypocoercivity in Hilbert spaces\",\"authors\":\"F. Achleitner , A. Arnold , V. Mehrmann , E.A. Nigsch\",\"doi\":\"10.1016/j.jfa.2024.110691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The concept of hypocoercivity for linear evolution equations with dissipation is discussed and equivalent characterizations that were developed for the finite-dimensional case are extended to separable Hilbert spaces. Using the concept of a hypocoercivity index, quantitative estimates on the short-time and long-time decay behavior of a hypocoercive system are derived. As a useful tool for analyzing the structural properties, an infinite-dimensional staircase form is also derived and connections to linear systems and control theory are presented. Several examples illustrate the new concepts and the results are applied to the Lorentz kinetic equation.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022123624003793/pdfft?md5=e2463e2bf7ceee0363d431fdcb34ac65&pid=1-s2.0-S0022123624003793-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123624003793\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624003793","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The concept of hypocoercivity for linear evolution equations with dissipation is discussed and equivalent characterizations that were developed for the finite-dimensional case are extended to separable Hilbert spaces. Using the concept of a hypocoercivity index, quantitative estimates on the short-time and long-time decay behavior of a hypocoercive system are derived. As a useful tool for analyzing the structural properties, an infinite-dimensional staircase form is also derived and connections to linear systems and control theory are presented. Several examples illustrate the new concepts and the results are applied to the Lorentz kinetic equation.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis