B. Bychkov , V. Gorbounov , L. Guterman , A. Kazakov
{"title":"电气网络的交映几何学","authors":"B. Bychkov , V. Gorbounov , L. Guterman , A. Kazakov","doi":"10.1016/j.geomphys.2024.105323","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we relate a well-known in symplectic geometry compactification of the space of symmetric bilinear forms considered as a chart of the Lagrangian Grassmannian to the specific compactifications of the space of electrical networks in the disc obtained in <span><span>[11]</span></span>, <span><span>[4]</span></span> and <span><span>[3]</span></span>. In particular, we state an explicit connection between these works and describe some of the combinatorics developed there in the language of symplectic geometry. We also show that the combinatorics of the concordance vectors forces the uniqueness of the symplectic form, such that corresponding points of the Grassmannian are isotropic. We define a notion of Lagrangian concordance which provides a construction of the compactification of the space of electrical networks in the positive part of the Lagrangian Grassmannian bypassing the construction from <span><span>[11]</span></span>.</div></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symplectic geometry of electrical networks\",\"authors\":\"B. Bychkov , V. Gorbounov , L. Guterman , A. Kazakov\",\"doi\":\"10.1016/j.geomphys.2024.105323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper we relate a well-known in symplectic geometry compactification of the space of symmetric bilinear forms considered as a chart of the Lagrangian Grassmannian to the specific compactifications of the space of electrical networks in the disc obtained in <span><span>[11]</span></span>, <span><span>[4]</span></span> and <span><span>[3]</span></span>. In particular, we state an explicit connection between these works and describe some of the combinatorics developed there in the language of symplectic geometry. We also show that the combinatorics of the concordance vectors forces the uniqueness of the symplectic form, such that corresponding points of the Grassmannian are isotropic. We define a notion of Lagrangian concordance which provides a construction of the compactification of the space of electrical networks in the positive part of the Lagrangian Grassmannian bypassing the construction from <span><span>[11]</span></span>.</div></div>\",\"PeriodicalId\":55602,\"journal\":{\"name\":\"Journal of Geometry and Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geometry and Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0393044024002249\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometry and Physics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0393044024002249","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
In this paper we relate a well-known in symplectic geometry compactification of the space of symmetric bilinear forms considered as a chart of the Lagrangian Grassmannian to the specific compactifications of the space of electrical networks in the disc obtained in [11], [4] and [3]. In particular, we state an explicit connection between these works and describe some of the combinatorics developed there in the language of symplectic geometry. We also show that the combinatorics of the concordance vectors forces the uniqueness of the symplectic form, such that corresponding points of the Grassmannian are isotropic. We define a notion of Lagrangian concordance which provides a construction of the compactification of the space of electrical networks in the positive part of the Lagrangian Grassmannian bypassing the construction from [11].
期刊介绍:
The Journal of Geometry and Physics is an International Journal in Mathematical Physics. The Journal stimulates the interaction between geometry and physics by publishing primary research, feature and review articles which are of common interest to practitioners in both fields.
The Journal of Geometry and Physics now also accepts Letters, allowing for rapid dissemination of outstanding results in the field of geometry and physics. Letters should not exceed a maximum of five printed journal pages (or contain a maximum of 5000 words) and should contain novel, cutting edge results that are of broad interest to the mathematical physics community. Only Letters which are expected to make a significant addition to the literature in the field will be considered.
The Journal covers the following areas of research:
Methods of:
• Algebraic and Differential Topology
• Algebraic Geometry
• Real and Complex Differential Geometry
• Riemannian Manifolds
• Symplectic Geometry
• Global Analysis, Analysis on Manifolds
• Geometric Theory of Differential Equations
• Geometric Control Theory
• Lie Groups and Lie Algebras
• Supermanifolds and Supergroups
• Discrete Geometry
• Spinors and Twistors
Applications to:
• Strings and Superstrings
• Noncommutative Topology and Geometry
• Quantum Groups
• Geometric Methods in Statistics and Probability
• Geometry Approaches to Thermodynamics
• Classical and Quantum Dynamical Systems
• Classical and Quantum Integrable Systems
• Classical and Quantum Mechanics
• Classical and Quantum Field Theory
• General Relativity
• Quantum Information
• Quantum Gravity