利用三唑分子催化剂将二氧化碳电还原为甲烷

IF 49.7 1区 材料科学 Q1 ENERGY & FUELS
Zhanyou Xu, Ruihu Lu, Zih-Yi Lin, Weixing Wu, Hsin-Jung Tsai, Qian Lu, Yuguang C. Li, Sung-Fu Hung, Chunshan Song, Jimmy C. Yu, Ziyun Wang, Ying Wang
{"title":"利用三唑分子催化剂将二氧化碳电还原为甲烷","authors":"Zhanyou Xu, Ruihu Lu, Zih-Yi Lin, Weixing Wu, Hsin-Jung Tsai, Qian Lu, Yuguang C. Li, Sung-Fu Hung, Chunshan Song, Jimmy C. Yu, Ziyun Wang, Ying Wang","doi":"10.1038/s41560-024-01645-0","DOIUrl":null,"url":null,"abstract":"The electrochemical CO2 reduction reaction towards value-added fuel and feedstocks often relies on metal-based catalysts. Organic molecular catalysts, which are more acutely tunable than metal catalysts, are still unable to catalyse CO2 to hydrocarbons under industrially relevant current densities for long-term operation, and the catalytic mechanism is still elusive. Here we report 3,5-diamino-1,2,4-triazole-based membrane electrode assemblies for CO2-to-CH4 conversion with Faradaic efficiency of (52 ± 4)% and turnover frequency of 23,060 h−1 at 250 mA cm−2. Our mechanistic studies suggest that the CO2 reduction at the 3,5-diamino-1,2,4-triazole electrode proceeds through the intermediary *CO2–*COOH–*C(OH)2–*COH to produce CH4 due to the spatially distributed active sites and the suitable energy level of the molecular orbitals. A pilot system operated under a total current of 10 A (current density = 123 mA cm−2) for 10 h is able to produce CH4 at a rate of 23.0 mmol h−1. Electrochemical CO2 reduction to make fuels and feedstocks often relies on metal-based catalysts. Here the authors report membrane electrode assemblies operating with relatively high current densities for CO2-to-CH4 conversion using organic molecular catalysts.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"9 11","pages":"1397-1406"},"PeriodicalIF":49.7000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electroreduction of CO2 to methane with triazole molecular catalysts\",\"authors\":\"Zhanyou Xu, Ruihu Lu, Zih-Yi Lin, Weixing Wu, Hsin-Jung Tsai, Qian Lu, Yuguang C. Li, Sung-Fu Hung, Chunshan Song, Jimmy C. Yu, Ziyun Wang, Ying Wang\",\"doi\":\"10.1038/s41560-024-01645-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The electrochemical CO2 reduction reaction towards value-added fuel and feedstocks often relies on metal-based catalysts. Organic molecular catalysts, which are more acutely tunable than metal catalysts, are still unable to catalyse CO2 to hydrocarbons under industrially relevant current densities for long-term operation, and the catalytic mechanism is still elusive. Here we report 3,5-diamino-1,2,4-triazole-based membrane electrode assemblies for CO2-to-CH4 conversion with Faradaic efficiency of (52 ± 4)% and turnover frequency of 23,060 h−1 at 250 mA cm−2. Our mechanistic studies suggest that the CO2 reduction at the 3,5-diamino-1,2,4-triazole electrode proceeds through the intermediary *CO2–*COOH–*C(OH)2–*COH to produce CH4 due to the spatially distributed active sites and the suitable energy level of the molecular orbitals. A pilot system operated under a total current of 10 A (current density = 123 mA cm−2) for 10 h is able to produce CH4 at a rate of 23.0 mmol h−1. Electrochemical CO2 reduction to make fuels and feedstocks often relies on metal-based catalysts. Here the authors report membrane electrode assemblies operating with relatively high current densities for CO2-to-CH4 conversion using organic molecular catalysts.\",\"PeriodicalId\":19073,\"journal\":{\"name\":\"Nature Energy\",\"volume\":\"9 11\",\"pages\":\"1397-1406\"},\"PeriodicalIF\":49.7000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41560-024-01645-0\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Energy","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41560-024-01645-0","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

为获得增值燃料和原料而进行的电化学二氧化碳还原反应通常依赖于金属催化剂。与金属催化剂相比,有机分子催化剂具有更敏锐的可调性,但在长期运行的工业相关电流密度条件下,有机分子催化剂仍无法将二氧化碳催化成碳氢化合物,催化机理也仍然难以捉摸。在此,我们报告了基于 3,5-二氨基-1,2,4-三唑的膜电极组件在 250 mA cm-2 条件下将 CO2 转化为 CH4 的过程,其法拉第效率为 (52 ± 4)%,周转频率为 23,060 h-1。我们的机理研究表明,在 3,5-二氨基-1,2,4-三唑电极上,由于活性位点的空间分布和分子轨道的合适能级,二氧化碳通过中间产物 *CO2-*COOH-*C(OH)2-*COH 还原生成 CH4。在总电流为 10 A(电流密度 = 123 mA cm-2)的条件下运行 10 小时的试验系统能够以 23.0 mmol h-1 的速率产生 CH4。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Electroreduction of CO2 to methane with triazole molecular catalysts

Electroreduction of CO2 to methane with triazole molecular catalysts

Electroreduction of CO2 to methane with triazole molecular catalysts
The electrochemical CO2 reduction reaction towards value-added fuel and feedstocks often relies on metal-based catalysts. Organic molecular catalysts, which are more acutely tunable than metal catalysts, are still unable to catalyse CO2 to hydrocarbons under industrially relevant current densities for long-term operation, and the catalytic mechanism is still elusive. Here we report 3,5-diamino-1,2,4-triazole-based membrane electrode assemblies for CO2-to-CH4 conversion with Faradaic efficiency of (52 ± 4)% and turnover frequency of 23,060 h−1 at 250 mA cm−2. Our mechanistic studies suggest that the CO2 reduction at the 3,5-diamino-1,2,4-triazole electrode proceeds through the intermediary *CO2–*COOH–*C(OH)2–*COH to produce CH4 due to the spatially distributed active sites and the suitable energy level of the molecular orbitals. A pilot system operated under a total current of 10 A (current density = 123 mA cm−2) for 10 h is able to produce CH4 at a rate of 23.0 mmol h−1. Electrochemical CO2 reduction to make fuels and feedstocks often relies on metal-based catalysts. Here the authors report membrane electrode assemblies operating with relatively high current densities for CO2-to-CH4 conversion using organic molecular catalysts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Energy
Nature Energy Energy-Energy Engineering and Power Technology
CiteScore
75.10
自引率
1.10%
发文量
193
期刊介绍: Nature Energy is a monthly, online-only journal committed to showcasing the most impactful research on energy, covering everything from its generation and distribution to the societal implications of energy technologies and policies. With a focus on exploring all facets of the ongoing energy discourse, Nature Energy delves into topics such as energy generation, storage, distribution, management, and the societal impacts of energy technologies and policies. Emphasizing studies that push the boundaries of knowledge and contribute to the development of next-generation solutions, the journal serves as a platform for the exchange of ideas among stakeholders at the forefront of the energy sector. Maintaining the hallmark standards of the Nature brand, Nature Energy boasts a dedicated team of professional editors, a rigorous peer-review process, meticulous copy-editing and production, rapid publication times, and editorial independence. In addition to original research articles, Nature Energy also publishes a range of content types, including Comments, Perspectives, Reviews, News & Views, Features, and Correspondence, covering a diverse array of disciplines relevant to the field of energy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信