通过结构调整实现富镍单晶阴极的高界面功能性

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Pei Liu, Haoran Wei, Tao Huang, Zhencheng Huang, Lingli Chen, Xuanlong He, Yuying Liu, Hongkai Yang, Mijie Liu, Shenghua Ye, Xuming Yang, Zhanhua Wu, Yaming Liu, Qingqing Jia, XiaoBai Ma, Jing Chen, Xiangzhong Ren, Xiaoping Ouyang, Jianhong Liu, Qianling Zhang, Jiangtao Hu
{"title":"通过结构调整实现富镍单晶阴极的高界面功能性","authors":"Pei Liu, Haoran Wei, Tao Huang, Zhencheng Huang, Lingli Chen, Xuanlong He, Yuying Liu, Hongkai Yang, Mijie Liu, Shenghua Ye, Xuming Yang, Zhanhua Wu, Yaming Liu, Qingqing Jia, XiaoBai Ma, Jing Chen, Xiangzhong Ren, Xiaoping Ouyang, Jianhong Liu, Qianling Zhang, Jiangtao Hu","doi":"10.1021/acsami.4c10398","DOIUrl":null,"url":null,"abstract":"Ni-rich single-crystalline layered cathodes have garnered significant attention due to their high energy density and thermal stability. However, they experience severe capacity degradation caused by lattice strain and interfacial side reactions during practical applications. In this study, an effective yttrium modification method is employed to stabilize the structure of Ni-rich single-crystalline LiNi<sub>0.83</sub>Mn<sub>0.05</sub>Co<sub>0.12</sub>O<sub>2</sub> (SC-NMC83) to solve these issues. This innovative approach successfully immobilizes oxygen within the material, preventing crack formation while simultaneously broadening the diffusion path of Li<sup>+</sup>. The yttrium-modified sample (SC-NMC83-Y) exhibits a superior capacity retention compared to the SC-NMC83 sample, with values of 90% and 76.1% after 100 cycles, respectively. This work demonstrates the promising potential of a doping strategy for Ni-rich single-crystalline cathodes and paves a pathway for its practical implementation, such as all-solid-state batteries.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural Regulation Enables High Interfacial Functionality for Ni-Rich Single-Crystalline Cathodes\",\"authors\":\"Pei Liu, Haoran Wei, Tao Huang, Zhencheng Huang, Lingli Chen, Xuanlong He, Yuying Liu, Hongkai Yang, Mijie Liu, Shenghua Ye, Xuming Yang, Zhanhua Wu, Yaming Liu, Qingqing Jia, XiaoBai Ma, Jing Chen, Xiangzhong Ren, Xiaoping Ouyang, Jianhong Liu, Qianling Zhang, Jiangtao Hu\",\"doi\":\"10.1021/acsami.4c10398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ni-rich single-crystalline layered cathodes have garnered significant attention due to their high energy density and thermal stability. However, they experience severe capacity degradation caused by lattice strain and interfacial side reactions during practical applications. In this study, an effective yttrium modification method is employed to stabilize the structure of Ni-rich single-crystalline LiNi<sub>0.83</sub>Mn<sub>0.05</sub>Co<sub>0.12</sub>O<sub>2</sub> (SC-NMC83) to solve these issues. This innovative approach successfully immobilizes oxygen within the material, preventing crack formation while simultaneously broadening the diffusion path of Li<sup>+</sup>. The yttrium-modified sample (SC-NMC83-Y) exhibits a superior capacity retention compared to the SC-NMC83 sample, with values of 90% and 76.1% after 100 cycles, respectively. This work demonstrates the promising potential of a doping strategy for Ni-rich single-crystalline cathodes and paves a pathway for its practical implementation, such as all-solid-state batteries.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c10398\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c10398","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

富镍单晶层状阴极因其高能量密度和热稳定性而备受关注。然而,在实际应用过程中,由于晶格应变和界面副反应,它们会出现严重的容量衰减。本研究采用了一种有效的钇改性方法来稳定富镍单晶锂镍0.83Mn0.05Co0.12O2(SC-NMC83)的结构,以解决这些问题。这种创新方法成功地固定了材料中的氧气,防止了裂纹的形成,同时拓宽了 Li+ 的扩散路径。与 SC-NMC83 样品相比,钇改性样品(SC-NMC83-Y)的容量保持率更高,100 次循环后分别达到 90% 和 76.1%。这项工作证明了富镍单晶阴极掺杂策略的巨大潜力,并为其实际应用(如全固态电池)铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Structural Regulation Enables High Interfacial Functionality for Ni-Rich Single-Crystalline Cathodes

Structural Regulation Enables High Interfacial Functionality for Ni-Rich Single-Crystalline Cathodes
Ni-rich single-crystalline layered cathodes have garnered significant attention due to their high energy density and thermal stability. However, they experience severe capacity degradation caused by lattice strain and interfacial side reactions during practical applications. In this study, an effective yttrium modification method is employed to stabilize the structure of Ni-rich single-crystalline LiNi0.83Mn0.05Co0.12O2 (SC-NMC83) to solve these issues. This innovative approach successfully immobilizes oxygen within the material, preventing crack formation while simultaneously broadening the diffusion path of Li+. The yttrium-modified sample (SC-NMC83-Y) exhibits a superior capacity retention compared to the SC-NMC83 sample, with values of 90% and 76.1% after 100 cycles, respectively. This work demonstrates the promising potential of a doping strategy for Ni-rich single-crystalline cathodes and paves a pathway for its practical implementation, such as all-solid-state batteries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信