{"title":"硝酸制氨固体电解质反应器","authors":"Yuting Wang, Bin Zhang","doi":"10.1038/s41929-024-01223-3","DOIUrl":null,"url":null,"abstract":"Electrochemical nitrate reduction to ammonia is a promising approach for waste conversion, yet the use of a concentrated supporting electrolyte creates a product separation issue. Now, a porous solid electrolyte reactor with a cation shielding effect is reported for nitrate wastewater treatment and the production of pure ammonia.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"7 9","pages":"959-960"},"PeriodicalIF":42.8000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solid electrolyte reactor for nitrate-to-ammonia\",\"authors\":\"Yuting Wang, Bin Zhang\",\"doi\":\"10.1038/s41929-024-01223-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrochemical nitrate reduction to ammonia is a promising approach for waste conversion, yet the use of a concentrated supporting electrolyte creates a product separation issue. Now, a porous solid electrolyte reactor with a cation shielding effect is reported for nitrate wastewater treatment and the production of pure ammonia.\",\"PeriodicalId\":18845,\"journal\":{\"name\":\"Nature Catalysis\",\"volume\":\"7 9\",\"pages\":\"959-960\"},\"PeriodicalIF\":42.8000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.nature.com/articles/s41929-024-01223-3\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41929-024-01223-3","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Electrochemical nitrate reduction to ammonia is a promising approach for waste conversion, yet the use of a concentrated supporting electrolyte creates a product separation issue. Now, a porous solid electrolyte reactor with a cation shielding effect is reported for nitrate wastewater treatment and the production of pure ammonia.
期刊介绍:
Nature Catalysis serves as a platform for researchers across chemistry and related fields, focusing on homogeneous catalysis, heterogeneous catalysis, and biocatalysts, encompassing both fundamental and applied studies. With a particular emphasis on advancing sustainable industries and processes, the journal provides comprehensive coverage of catalysis research, appealing to scientists, engineers, and researchers in academia and industry.
Maintaining the high standards of the Nature brand, Nature Catalysis boasts a dedicated team of professional editors, rigorous peer-review processes, and swift publication times, ensuring editorial independence and quality. The journal publishes work spanning heterogeneous catalysis, homogeneous catalysis, and biocatalysis, covering areas such as catalytic synthesis, mechanisms, characterization, computational studies, nanoparticle catalysis, electrocatalysis, photocatalysis, environmental catalysis, asymmetric catalysis, and various forms of organocatalysis.