通过全局最优真相发现技术表示三维地质模型的不确定性

IF 4.8 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Nan Li, Keyan Xiao, Shitao Yin, Cangbai Li, Xianglong Song, Wenkai Chu, Weihua Hua, Rui Cao
{"title":"通过全局最优真相发现技术表示三维地质模型的不确定性","authors":"Nan Li, Keyan Xiao, Shitao Yin, Cangbai Li, Xianglong Song, Wenkai Chu, Weihua Hua, Rui Cao","doi":"10.1007/s11053-024-10404-7","DOIUrl":null,"url":null,"abstract":"<p>Three-dimensional (3D) geological modeling is a process of interpretation that integrates multiple source inputs and knowledge into geometry to represent the understanding of geologists. When geologists build a high-quality 3D geological model, this process still involves some issues such as sparse drillhole data, imperfect prior knowledge, and sensitive modeling algorithms. Therefore, taking uncertainty as the measurement criterion for the variation extent of the posterior likelihood of the 3D geological model and assisting in increasing the quality of the model are crucial issues in this domain. This paper proposes a novel method based on a (1 + <i>ε</i>)-approximation global optimum strategy, which is a type of big data and machine learning technique, to determine and present the uncertainty hidden in geometry. Compared with previous approaches, our strategy made the following new contributions: (1) the global optimum solution calculated by potential models is utilized to represent the uncertainty at each location; (2) the strategy offers a quantifiable reliability to each model that is involved in the evaluation process, and values of reliability are unknown before the commencement, meaning that they do not depend on expert experience; moreover, they can also be verified by comparing prior knowledge with information that such 3D models possess; (3) compared with previous studies, the number of perturbing models is no longer a key prerequisite for this kind of study to evaluate the quality of one geological model, thereby greatly reducing the computational complexity and improving the practicability. Finally, a case study was conducted to assess the uncertainty of a real 3D geological model in northwest Hunan Province, China.</p>","PeriodicalId":54284,"journal":{"name":"Natural Resources Research","volume":"1 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Representing the Uncertainty of a 3D Geological Model via Global Optimum Truth Discovery Technology\",\"authors\":\"Nan Li, Keyan Xiao, Shitao Yin, Cangbai Li, Xianglong Song, Wenkai Chu, Weihua Hua, Rui Cao\",\"doi\":\"10.1007/s11053-024-10404-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Three-dimensional (3D) geological modeling is a process of interpretation that integrates multiple source inputs and knowledge into geometry to represent the understanding of geologists. When geologists build a high-quality 3D geological model, this process still involves some issues such as sparse drillhole data, imperfect prior knowledge, and sensitive modeling algorithms. Therefore, taking uncertainty as the measurement criterion for the variation extent of the posterior likelihood of the 3D geological model and assisting in increasing the quality of the model are crucial issues in this domain. This paper proposes a novel method based on a (1 + <i>ε</i>)-approximation global optimum strategy, which is a type of big data and machine learning technique, to determine and present the uncertainty hidden in geometry. Compared with previous approaches, our strategy made the following new contributions: (1) the global optimum solution calculated by potential models is utilized to represent the uncertainty at each location; (2) the strategy offers a quantifiable reliability to each model that is involved in the evaluation process, and values of reliability are unknown before the commencement, meaning that they do not depend on expert experience; moreover, they can also be verified by comparing prior knowledge with information that such 3D models possess; (3) compared with previous studies, the number of perturbing models is no longer a key prerequisite for this kind of study to evaluate the quality of one geological model, thereby greatly reducing the computational complexity and improving the practicability. Finally, a case study was conducted to assess the uncertainty of a real 3D geological model in northwest Hunan Province, China.</p>\",\"PeriodicalId\":54284,\"journal\":{\"name\":\"Natural Resources Research\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Resources Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s11053-024-10404-7\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11053-024-10404-7","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

三维(3D)地质建模是一种解释过程,它将多种源输入和知识整合为几何图形,以体现地质学家的理解。当地质学家建立高质量的三维地质模型时,这一过程仍涉及一些问题,如钻孔数据稀疏、先验知识不完善、建模算法敏感等。因此,将不确定性作为三维地质模型后验似然变化范围的测量标准,并协助提高模型质量是该领域的关键问题。本文提出了一种基于(1 + ε)近似全局最优策略的新方法,这是一种大数据和机器学习技术,用于确定和呈现隐藏在几何中的不确定性。与以往的方法相比,我们的策略有以下新贡献:(1) 利用潜在模型计算出的全局最优解来表示每个位置的不确定性;(2) 该策略为参与评估过程的每个模型提供了可量化的可靠性,可靠性值在开始前是未知的,这意味着它们不依赖于专家经验;(3) 与以往的研究相比,扰动模型的数量不再是此类研究评价一个地质模型质量的关键前提,从而大大降低了计算复杂度,提高了实用性。最后,我们进行了一项案例研究,以评估中国湖南省西北部一个真实三维地质模型的不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Representing the Uncertainty of a 3D Geological Model via Global Optimum Truth Discovery Technology

Representing the Uncertainty of a 3D Geological Model via Global Optimum Truth Discovery Technology

Three-dimensional (3D) geological modeling is a process of interpretation that integrates multiple source inputs and knowledge into geometry to represent the understanding of geologists. When geologists build a high-quality 3D geological model, this process still involves some issues such as sparse drillhole data, imperfect prior knowledge, and sensitive modeling algorithms. Therefore, taking uncertainty as the measurement criterion for the variation extent of the posterior likelihood of the 3D geological model and assisting in increasing the quality of the model are crucial issues in this domain. This paper proposes a novel method based on a (1 + ε)-approximation global optimum strategy, which is a type of big data and machine learning technique, to determine and present the uncertainty hidden in geometry. Compared with previous approaches, our strategy made the following new contributions: (1) the global optimum solution calculated by potential models is utilized to represent the uncertainty at each location; (2) the strategy offers a quantifiable reliability to each model that is involved in the evaluation process, and values of reliability are unknown before the commencement, meaning that they do not depend on expert experience; moreover, they can also be verified by comparing prior knowledge with information that such 3D models possess; (3) compared with previous studies, the number of perturbing models is no longer a key prerequisite for this kind of study to evaluate the quality of one geological model, thereby greatly reducing the computational complexity and improving the practicability. Finally, a case study was conducted to assess the uncertainty of a real 3D geological model in northwest Hunan Province, China.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Natural Resources Research
Natural Resources Research Environmental Science-General Environmental Science
CiteScore
11.90
自引率
11.10%
发文量
151
期刊介绍: This journal publishes quantitative studies of natural (mainly but not limited to mineral) resources exploration, evaluation and exploitation, including environmental and risk-related aspects. Typical articles use geoscientific data or analyses to assess, test, or compare resource-related aspects. NRR covers a wide variety of resources including minerals, coal, hydrocarbon, geothermal, water, and vegetation. Case studies are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信