在 FU Ori 星盘边界探测到的远紫外线吸积冲击波

Adolfo S. Carvalho, Lynne A. Hillenbrand, Kevin France and Gregory J. Herczeg
{"title":"在 FU Ori 星盘边界探测到的远紫外线吸积冲击波","authors":"Adolfo S. Carvalho, Lynne A. Hillenbrand, Kevin France and Gregory J. Herczeg","doi":"10.3847/2041-8213/ad74eb","DOIUrl":null,"url":null,"abstract":"FU Ori objects are the most extreme eruptive young stars known. Their 4–5 mag photometric outbursts last for decades and are attributed to a factor of up to 10,000 increase in the stellar accretion rate. The nature of the accretion disk-to-star interface in FU Ori objects has remained a mystery for decades. To date, attempts to directly observe a shock or boundary layer have been thwarted by the apparent lack of emission in excess of the accretion disk photosphere down to λ = 2300 Å. We present a new near-ultraviolet and the first high-sensitivity far-ultraviolet (FUV) spectrum of FU Ori. The FUV continuum is detected for the first time and, at λ = 1400 Å, is more than 104 times brighter than predicted by a viscous accretion disk. We interpret the excess as arising from a shock at the boundary between the disk and the stellar surface. We model the shock emission as a blackbody and find that the temperature of the shocked material is TFUV ≈ 16,000 ± 2000 K. The shock temperature corresponds to an accretion flow along the surface of the disk that reaches a velocity of 40 km s−1 at the boundary, consistent with predictions from simulations.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Far-ultraviolet-detected Accretion Shock at the Star–Disk Boundary of FU Ori\",\"authors\":\"Adolfo S. Carvalho, Lynne A. Hillenbrand, Kevin France and Gregory J. Herczeg\",\"doi\":\"10.3847/2041-8213/ad74eb\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"FU Ori objects are the most extreme eruptive young stars known. Their 4–5 mag photometric outbursts last for decades and are attributed to a factor of up to 10,000 increase in the stellar accretion rate. The nature of the accretion disk-to-star interface in FU Ori objects has remained a mystery for decades. To date, attempts to directly observe a shock or boundary layer have been thwarted by the apparent lack of emission in excess of the accretion disk photosphere down to λ = 2300 Å. We present a new near-ultraviolet and the first high-sensitivity far-ultraviolet (FUV) spectrum of FU Ori. The FUV continuum is detected for the first time and, at λ = 1400 Å, is more than 104 times brighter than predicted by a viscous accretion disk. We interpret the excess as arising from a shock at the boundary between the disk and the stellar surface. We model the shock emission as a blackbody and find that the temperature of the shocked material is TFUV ≈ 16,000 ± 2000 K. The shock temperature corresponds to an accretion flow along the surface of the disk that reaches a velocity of 40 km s−1 at the boundary, consistent with predictions from simulations.\",\"PeriodicalId\":501814,\"journal\":{\"name\":\"The Astrophysical Journal Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Astrophysical Journal Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/2041-8213/ad74eb\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/ad74eb","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

FU Ori天体是已知爆发最剧烈的年轻恒星。它们4-5马格的光度爆发持续数十年之久,其原因是恒星吸积速率增加了高达10,000倍。FU Ori天体的吸积盘-恒星界面的性质几十年来一直是个谜。迄今为止,直接观测冲击层或边界层的尝试都因吸积盘光球以下至 λ = 2300 Å 范围内明显缺乏发射而受挫。我们展示了 FU Ori 的新近紫外光谱和首个高灵敏度远紫外(FUV)光谱。我们首次探测到了 FUV 连续波,在 λ = 1400 Å 处,其亮度比粘性吸积盘的预测亮度高 104 倍以上。我们将这一过量解释为来自星盘和恒星表面边界的冲击。我们将冲击发射建模为黑体,发现冲击物质的温度为 TFUV ≈ 16,000 ± 2000 K。冲击温度对应于沿圆盘表面的吸积流,在边界处的速度达到 40 km s-1,与模拟预测一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Far-ultraviolet-detected Accretion Shock at the Star–Disk Boundary of FU Ori
FU Ori objects are the most extreme eruptive young stars known. Their 4–5 mag photometric outbursts last for decades and are attributed to a factor of up to 10,000 increase in the stellar accretion rate. The nature of the accretion disk-to-star interface in FU Ori objects has remained a mystery for decades. To date, attempts to directly observe a shock or boundary layer have been thwarted by the apparent lack of emission in excess of the accretion disk photosphere down to λ = 2300 Å. We present a new near-ultraviolet and the first high-sensitivity far-ultraviolet (FUV) spectrum of FU Ori. The FUV continuum is detected for the first time and, at λ = 1400 Å, is more than 104 times brighter than predicted by a viscous accretion disk. We interpret the excess as arising from a shock at the boundary between the disk and the stellar surface. We model the shock emission as a blackbody and find that the temperature of the shocked material is TFUV ≈ 16,000 ± 2000 K. The shock temperature corresponds to an accretion flow along the surface of the disk that reaches a velocity of 40 km s−1 at the boundary, consistent with predictions from simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信