通过微乳液法合成,利用晶体面工程提高 La2NiO4+δ 氧传输膜的性能

IF 4.4 2区 化学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Giamper Escobar Cano, Merle Wellmann, Frank Steinbach, Moritz Thiem, Wenjie Xie, Anke Weidenkaff, Armin Feldhoff
{"title":"通过微乳液法合成,利用晶体面工程提高 La2NiO4+δ 氧传输膜的性能","authors":"Giamper Escobar Cano, Merle Wellmann, Frank Steinbach, Moritz Thiem, Wenjie Xie, Anke Weidenkaff, Armin Feldhoff","doi":"10.1021/acs.chemmater.4c01570","DOIUrl":null,"url":null,"abstract":"La<sub>2</sub>NiO<sub>4+δ</sub> nanorods, synthesized via reverse microemulsion─a crystal facet engineering method─served as building blocks for developing oxygen transport membranes. Comparisons were drawn with ceramic membranes derived from commercial La<sub>2</sub>NiO<sub>4+δ</sub> nanoparticles. The membrane manufacturing process involved either conventional sintering or the field-assisted sintering technique/spark plasma sintering. The microstructure analysis of the initial powders and the resulting ceramics was thoroughly assessed by X-ray diffraction, scanning and transmission electron microscopy as well as energy-dispersive X-ray spectroscopy. As a consequence of the reaction conditions, the nanorods possess an orthorhombic crystal structure, with LaOBr present as a minor phase. Furthermore, the surface structure of the La<sub>2</sub>NiO<sub>4+δ</sub> nanorods was discerned via selected area electron diffraction, revealing a composition of (001)<sub>o</sub>-type and (1<i></i><span style=\"color: inherit;\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"&gt;&lt;mover&gt;&lt;mi mathvariant=\"normal\"&gt;1&lt;/mi&gt;&lt;mo accent=\"true\" stretchy=\"false\"&gt;&amp;#xAF;&lt;/mo&gt;&lt;/mover&gt;&lt;/math&gt;' role=\"presentation\" style=\"position: relative;\" tabindex=\"0\"><nobr aria-hidden=\"true\"><span style=\"width: 0.571em; display: inline-block;\"><span style=\"display: inline-block; position: relative; width: 0.514em; height: 0px; font-size: 110%;\"><span style=\"position: absolute; clip: rect(1.139em, 1000.4em, 2.332em, -999.997em); top: -2.156em; left: 0em;\"><span><span><span style=\"display: inline-block; position: relative; width: 0.514em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.128em, 1000.4em, 4.151em, -999.997em); top: -3.974em; left: 0em;\"><span style=\"font-family: STIXMathJax_Main;\">1</span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; clip: rect(3.185em, 1000.34em, 3.582em, -999.997em); top: -4.259em; left: 0.06em;\"><span style=\"font-family: STIXMathJax_Main;\">¯</span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span></span><span style=\"display: inline-block; width: 0px; height: 2.162em;\"></span></span></span><span style=\"display: inline-block; overflow: hidden; vertical-align: -0.059em; border-left: 0px solid; width: 0px; height: 1.066em;\"></span></span></nobr><span role=\"presentation\"><math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mover><mi mathvariant=\"normal\">1</mi><mo accent=\"true\" stretchy=\"false\">¯</mo></mover></math></span></span><script type=\"math/mml\"><math display=\"inline\"><mover><mi mathvariant=\"normal\">1</mi><mo accent=\"true\" stretchy=\"false\">¯</mo></mover></math></script>0)<sub>o</sub>-type facets on the sides and (110)<sub>o</sub>-type facets at the end, with additional facets observed between these surfaces. Among the sintering techniques, spark plasma sintering demonstrated superior performance, when applied to La<sub>2</sub>NiO<sub>4+δ</sub> nanorods, as it effectively preserved their rod-like nanostructure during the sintering process. The resulting nanorod-derived La<sub>2</sub>NiO<sub>4+δ</sub> ceramics exhibited excellent oxygen permeation, largely due to the large proportion of orthorhombic (1<i></i><span style=\"color: inherit;\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"&gt;&lt;mover&gt;&lt;mi mathvariant=\"normal\"&gt;1&lt;/mi&gt;&lt;mo accent=\"true\" stretchy=\"false\"&gt;&amp;#xAF;&lt;/mo&gt;&lt;/mover&gt;&lt;/math&gt;' role=\"presentation\" style=\"position: relative;\" tabindex=\"0\"><nobr aria-hidden=\"true\"><span style=\"width: 0.571em; display: inline-block;\"><span style=\"display: inline-block; position: relative; width: 0.514em; height: 0px; font-size: 110%;\"><span style=\"position: absolute; clip: rect(1.139em, 1000.4em, 2.332em, -999.997em); top: -2.156em; left: 0em;\"><span><span><span style=\"display: inline-block; position: relative; width: 0.514em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.128em, 1000.4em, 4.151em, -999.997em); top: -3.974em; left: 0em;\"><span style=\"font-family: STIXMathJax_Main;\">1</span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; clip: rect(3.185em, 1000.34em, 3.582em, -999.997em); top: -4.259em; left: 0.06em;\"><span style=\"font-family: STIXMathJax_Main;\">¯</span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span></span><span style=\"display: inline-block; width: 0px; height: 2.162em;\"></span></span></span><span style=\"display: inline-block; overflow: hidden; vertical-align: -0.059em; border-left: 0px solid; width: 0px; height: 1.066em;\"></span></span></nobr><span role=\"presentation\"><math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mover><mi mathvariant=\"normal\">1</mi><mo accent=\"true\" stretchy=\"false\">¯</mo></mover></math></span></span><script type=\"math/mml\"><math display=\"inline\"><mover><mi mathvariant=\"normal\">1</mi><mo accent=\"true\" stretchy=\"false\">¯</mo></mover></math></script>0)<sub>o</sub>-type surfaces in the rod-shaped grains, which correspond to tetragonal (010)<sub>t</sub> and (0<i></i><span style=\"color: inherit;\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"&gt;&lt;mover&gt;&lt;mi mathvariant=\"normal\"&gt;1&lt;/mi&gt;&lt;mo accent=\"true\" stretchy=\"false\"&gt;&amp;#xAF;&lt;/mo&gt;&lt;/mover&gt;&lt;/math&gt;' role=\"presentation\" style=\"position: relative;\" tabindex=\"0\"><nobr aria-hidden=\"true\"><span style=\"width: 0.571em; display: inline-block;\"><span style=\"display: inline-block; position: relative; width: 0.514em; height: 0px; font-size: 110%;\"><span style=\"position: absolute; clip: rect(1.139em, 1000.4em, 2.332em, -999.997em); top: -2.156em; left: 0em;\"><span><span><span style=\"display: inline-block; position: relative; width: 0.514em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.128em, 1000.4em, 4.151em, -999.997em); top: -3.974em; left: 0em;\"><span style=\"font-family: STIXMathJax_Main;\">1</span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; clip: rect(3.185em, 1000.34em, 3.582em, -999.997em); top: -4.259em; left: 0.06em;\"><span style=\"font-family: STIXMathJax_Main;\">¯</span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span></span><span style=\"display: inline-block; width: 0px; height: 2.162em;\"></span></span></span><span style=\"display: inline-block; overflow: hidden; vertical-align: -0.059em; border-left: 0px solid; width: 0px; height: 1.066em;\"></span></span></nobr><span role=\"presentation\"><math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mover><mi mathvariant=\"normal\">1</mi><mo accent=\"true\" stretchy=\"false\">¯</mo></mover></math></span></span><script type=\"math/mml\"><math display=\"inline\"><mover><mi mathvariant=\"normal\">1</mi><mo accent=\"true\" stretchy=\"false\">¯</mo></mover></math></script>0)<sub>t</sub> surfaces. The (1<i></i><span style=\"color: inherit;\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"&gt;&lt;mover&gt;&lt;mi mathvariant=\"normal\"&gt;1&lt;/mi&gt;&lt;mo accent=\"true\" stretchy=\"false\"&gt;&amp;#xAF;&lt;/mo&gt;&lt;/mover&gt;&lt;/math&gt;' role=\"presentation\" style=\"position: relative;\" tabindex=\"0\"><nobr aria-hidden=\"true\"><span style=\"width: 0.571em; display: inline-block;\"><span style=\"display: inline-block; position: relative; width: 0.514em; height: 0px; font-size: 110%;\"><span style=\"position: absolute; clip: rect(1.139em, 1000.4em, 2.332em, -999.997em); top: -2.156em; left: 0em;\"><span><span><span style=\"display: inline-block; position: relative; width: 0.514em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.128em, 1000.4em, 4.151em, -999.997em); top: -3.974em; left: 0em;\"><span style=\"font-family: STIXMathJax_Main;\">1</span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; clip: rect(3.185em, 1000.34em, 3.582em, -999.997em); top: -4.259em; left: 0.06em;\"><span style=\"font-family: STIXMathJax_Main;\">¯</span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span></span><span style=\"display: inline-block; width: 0px; height: 2.162em;\"></span></span></span><span style=\"display: inline-block; overflow: hidden; vertical-align: -0.059em; border-left: 0px solid; width: 0px; height: 1.066em;\"></span></span></nobr><span role=\"presentation\"><math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mover><mi mathvariant=\"normal\">1</mi><mo accent=\"true\" stretchy=\"false\">¯</mo></mover></math></span></span><script type=\"math/mml\"><math display=\"inline\"><mover><mi mathvariant=\"normal\">1</mi><mo accent=\"true\" stretchy=\"false\">¯</mo></mover></math></script>0)<sub>o</sub>-type facets facilitated the oxygen surface exchange, leading to improved oxygen permeation fluxes between 1023 and 1123 K compared to membranes derived from nanoparticles.","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Performance of La2NiO4+δ Oxygen-Transporting Membranes Using Crystal Facet Engineering via Microemulsion-Based Synthesis\",\"authors\":\"Giamper Escobar Cano, Merle Wellmann, Frank Steinbach, Moritz Thiem, Wenjie Xie, Anke Weidenkaff, Armin Feldhoff\",\"doi\":\"10.1021/acs.chemmater.4c01570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"La<sub>2</sub>NiO<sub>4+δ</sub> nanorods, synthesized via reverse microemulsion─a crystal facet engineering method─served as building blocks for developing oxygen transport membranes. Comparisons were drawn with ceramic membranes derived from commercial La<sub>2</sub>NiO<sub>4+δ</sub> nanoparticles. The membrane manufacturing process involved either conventional sintering or the field-assisted sintering technique/spark plasma sintering. The microstructure analysis of the initial powders and the resulting ceramics was thoroughly assessed by X-ray diffraction, scanning and transmission electron microscopy as well as energy-dispersive X-ray spectroscopy. As a consequence of the reaction conditions, the nanorods possess an orthorhombic crystal structure, with LaOBr present as a minor phase. Furthermore, the surface structure of the La<sub>2</sub>NiO<sub>4+δ</sub> nanorods was discerned via selected area electron diffraction, revealing a composition of (001)<sub>o</sub>-type and (1<i></i><span style=\\\"color: inherit;\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"&gt;&lt;mover&gt;&lt;mi mathvariant=\\\"normal\\\"&gt;1&lt;/mi&gt;&lt;mo accent=\\\"true\\\" stretchy=\\\"false\\\"&gt;&amp;#xAF;&lt;/mo&gt;&lt;/mover&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"position: relative;\\\" tabindex=\\\"0\\\"><nobr aria-hidden=\\\"true\\\"><span style=\\\"width: 0.571em; display: inline-block;\\\"><span style=\\\"display: inline-block; position: relative; width: 0.514em; height: 0px; font-size: 110%;\\\"><span style=\\\"position: absolute; clip: rect(1.139em, 1000.4em, 2.332em, -999.997em); top: -2.156em; left: 0em;\\\"><span><span><span style=\\\"display: inline-block; position: relative; width: 0.514em; height: 0px;\\\"><span style=\\\"position: absolute; clip: rect(3.128em, 1000.4em, 4.151em, -999.997em); top: -3.974em; left: 0em;\\\"><span style=\\\"font-family: STIXMathJax_Main;\\\">1</span><span style=\\\"display: inline-block; width: 0px; height: 3.98em;\\\"></span></span><span style=\\\"position: absolute; clip: rect(3.185em, 1000.34em, 3.582em, -999.997em); top: -4.259em; left: 0.06em;\\\"><span style=\\\"font-family: STIXMathJax_Main;\\\">¯</span><span style=\\\"display: inline-block; width: 0px; height: 3.98em;\\\"></span></span></span></span></span><span style=\\\"display: inline-block; width: 0px; height: 2.162em;\\\"></span></span></span><span style=\\\"display: inline-block; overflow: hidden; vertical-align: -0.059em; border-left: 0px solid; width: 0px; height: 1.066em;\\\"></span></span></nobr><span role=\\\"presentation\\\"><math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mover><mi mathvariant=\\\"normal\\\">1</mi><mo accent=\\\"true\\\" stretchy=\\\"false\\\">¯</mo></mover></math></span></span><script type=\\\"math/mml\\\"><math display=\\\"inline\\\"><mover><mi mathvariant=\\\"normal\\\">1</mi><mo accent=\\\"true\\\" stretchy=\\\"false\\\">¯</mo></mover></math></script>0)<sub>o</sub>-type facets on the sides and (110)<sub>o</sub>-type facets at the end, with additional facets observed between these surfaces. Among the sintering techniques, spark plasma sintering demonstrated superior performance, when applied to La<sub>2</sub>NiO<sub>4+δ</sub> nanorods, as it effectively preserved their rod-like nanostructure during the sintering process. The resulting nanorod-derived La<sub>2</sub>NiO<sub>4+δ</sub> ceramics exhibited excellent oxygen permeation, largely due to the large proportion of orthorhombic (1<i></i><span style=\\\"color: inherit;\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"&gt;&lt;mover&gt;&lt;mi mathvariant=\\\"normal\\\"&gt;1&lt;/mi&gt;&lt;mo accent=\\\"true\\\" stretchy=\\\"false\\\"&gt;&amp;#xAF;&lt;/mo&gt;&lt;/mover&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"position: relative;\\\" tabindex=\\\"0\\\"><nobr aria-hidden=\\\"true\\\"><span style=\\\"width: 0.571em; display: inline-block;\\\"><span style=\\\"display: inline-block; position: relative; width: 0.514em; height: 0px; font-size: 110%;\\\"><span style=\\\"position: absolute; clip: rect(1.139em, 1000.4em, 2.332em, -999.997em); top: -2.156em; left: 0em;\\\"><span><span><span style=\\\"display: inline-block; position: relative; width: 0.514em; height: 0px;\\\"><span style=\\\"position: absolute; clip: rect(3.128em, 1000.4em, 4.151em, -999.997em); top: -3.974em; left: 0em;\\\"><span style=\\\"font-family: STIXMathJax_Main;\\\">1</span><span style=\\\"display: inline-block; width: 0px; height: 3.98em;\\\"></span></span><span style=\\\"position: absolute; clip: rect(3.185em, 1000.34em, 3.582em, -999.997em); top: -4.259em; left: 0.06em;\\\"><span style=\\\"font-family: STIXMathJax_Main;\\\">¯</span><span style=\\\"display: inline-block; width: 0px; height: 3.98em;\\\"></span></span></span></span></span><span style=\\\"display: inline-block; width: 0px; height: 2.162em;\\\"></span></span></span><span style=\\\"display: inline-block; overflow: hidden; vertical-align: -0.059em; border-left: 0px solid; width: 0px; height: 1.066em;\\\"></span></span></nobr><span role=\\\"presentation\\\"><math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mover><mi mathvariant=\\\"normal\\\">1</mi><mo accent=\\\"true\\\" stretchy=\\\"false\\\">¯</mo></mover></math></span></span><script type=\\\"math/mml\\\"><math display=\\\"inline\\\"><mover><mi mathvariant=\\\"normal\\\">1</mi><mo accent=\\\"true\\\" stretchy=\\\"false\\\">¯</mo></mover></math></script>0)<sub>o</sub>-type surfaces in the rod-shaped grains, which correspond to tetragonal (010)<sub>t</sub> and (0<i></i><span style=\\\"color: inherit;\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"&gt;&lt;mover&gt;&lt;mi mathvariant=\\\"normal\\\"&gt;1&lt;/mi&gt;&lt;mo accent=\\\"true\\\" stretchy=\\\"false\\\"&gt;&amp;#xAF;&lt;/mo&gt;&lt;/mover&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"position: relative;\\\" tabindex=\\\"0\\\"><nobr aria-hidden=\\\"true\\\"><span style=\\\"width: 0.571em; display: inline-block;\\\"><span style=\\\"display: inline-block; position: relative; width: 0.514em; height: 0px; font-size: 110%;\\\"><span style=\\\"position: absolute; clip: rect(1.139em, 1000.4em, 2.332em, -999.997em); top: -2.156em; left: 0em;\\\"><span><span><span style=\\\"display: inline-block; position: relative; width: 0.514em; height: 0px;\\\"><span style=\\\"position: absolute; clip: rect(3.128em, 1000.4em, 4.151em, -999.997em); top: -3.974em; left: 0em;\\\"><span style=\\\"font-family: STIXMathJax_Main;\\\">1</span><span style=\\\"display: inline-block; width: 0px; height: 3.98em;\\\"></span></span><span style=\\\"position: absolute; clip: rect(3.185em, 1000.34em, 3.582em, -999.997em); top: -4.259em; left: 0.06em;\\\"><span style=\\\"font-family: STIXMathJax_Main;\\\">¯</span><span style=\\\"display: inline-block; width: 0px; height: 3.98em;\\\"></span></span></span></span></span><span style=\\\"display: inline-block; width: 0px; height: 2.162em;\\\"></span></span></span><span style=\\\"display: inline-block; overflow: hidden; vertical-align: -0.059em; border-left: 0px solid; width: 0px; height: 1.066em;\\\"></span></span></nobr><span role=\\\"presentation\\\"><math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mover><mi mathvariant=\\\"normal\\\">1</mi><mo accent=\\\"true\\\" stretchy=\\\"false\\\">¯</mo></mover></math></span></span><script type=\\\"math/mml\\\"><math display=\\\"inline\\\"><mover><mi mathvariant=\\\"normal\\\">1</mi><mo accent=\\\"true\\\" stretchy=\\\"false\\\">¯</mo></mover></math></script>0)<sub>t</sub> surfaces. The (1<i></i><span style=\\\"color: inherit;\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"&gt;&lt;mover&gt;&lt;mi mathvariant=\\\"normal\\\"&gt;1&lt;/mi&gt;&lt;mo accent=\\\"true\\\" stretchy=\\\"false\\\"&gt;&amp;#xAF;&lt;/mo&gt;&lt;/mover&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"position: relative;\\\" tabindex=\\\"0\\\"><nobr aria-hidden=\\\"true\\\"><span style=\\\"width: 0.571em; display: inline-block;\\\"><span style=\\\"display: inline-block; position: relative; width: 0.514em; height: 0px; font-size: 110%;\\\"><span style=\\\"position: absolute; clip: rect(1.139em, 1000.4em, 2.332em, -999.997em); top: -2.156em; left: 0em;\\\"><span><span><span style=\\\"display: inline-block; position: relative; width: 0.514em; height: 0px;\\\"><span style=\\\"position: absolute; clip: rect(3.128em, 1000.4em, 4.151em, -999.997em); top: -3.974em; left: 0em;\\\"><span style=\\\"font-family: STIXMathJax_Main;\\\">1</span><span style=\\\"display: inline-block; width: 0px; height: 3.98em;\\\"></span></span><span style=\\\"position: absolute; clip: rect(3.185em, 1000.34em, 3.582em, -999.997em); top: -4.259em; left: 0.06em;\\\"><span style=\\\"font-family: STIXMathJax_Main;\\\">¯</span><span style=\\\"display: inline-block; width: 0px; height: 3.98em;\\\"></span></span></span></span></span><span style=\\\"display: inline-block; width: 0px; height: 2.162em;\\\"></span></span></span><span style=\\\"display: inline-block; overflow: hidden; vertical-align: -0.059em; border-left: 0px solid; width: 0px; height: 1.066em;\\\"></span></span></nobr><span role=\\\"presentation\\\"><math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mover><mi mathvariant=\\\"normal\\\">1</mi><mo accent=\\\"true\\\" stretchy=\\\"false\\\">¯</mo></mover></math></span></span><script type=\\\"math/mml\\\"><math display=\\\"inline\\\"><mover><mi mathvariant=\\\"normal\\\">1</mi><mo accent=\\\"true\\\" stretchy=\\\"false\\\">¯</mo></mover></math></script>0)<sub>o</sub>-type facets facilitated the oxygen surface exchange, leading to improved oxygen permeation fluxes between 1023 and 1123 K compared to membranes derived from nanoparticles.\",\"PeriodicalId\":7,\"journal\":{\"name\":\"ACS Applied Polymer Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Polymer Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.chemmater.4c01570\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.chemmater.4c01570","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过反向微乳液--一种晶面工程方法--合成的 La2NiO4+δ 纳米棒是开发氧气传输膜的构件。我们将其与由商用 La2NiO4+δ 纳米颗粒制成的陶瓷膜进行了比较。膜的制造过程包括传统烧结或现场辅助烧结技术/火花等离子烧结。通过 X 射线衍射、扫描和透射电子显微镜以及能量色散 X 射线光谱,对初始粉末和所得陶瓷的微观结构进行了全面评估。由于反应条件的影响,纳米棒具有正交的晶体结构,LaOBr 作为次要相存在。此外,还通过选区电子衍射法研究了 La2NiO4+δ 纳米棒的表面结构,发现其侧面由 (001)o 型和 (11¯1¯1¯0)o 型刻面组成,末端为 (110)o 型刻面,在这些刻面之间还观察到其他刻面。在各种烧结技术中,火花等离子体烧结技术在用于 La2NiO4+δ 纳米棒时表现出卓越的性能,因为它在烧结过程中有效地保留了棒状纳米结构。由此产生的纳米棒衍生 La2NiO4+δ 陶瓷具有优异的透氧性能,这主要是由于棒状晶粒中正交(11¯1¯1¯0)o 型表面所占比例较大,而这些表面与四方(010)t 和(01¯1¯1¯0)t 表面相对应。(11¯1¯1¯0)o型表面促进了氧表面交换,与纳米颗粒膜相比,在1023至1123 K之间的氧渗透通量有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhanced Performance of La2NiO4+δ Oxygen-Transporting Membranes Using Crystal Facet Engineering via Microemulsion-Based Synthesis

Enhanced Performance of La2NiO4+δ Oxygen-Transporting Membranes Using Crystal Facet Engineering via Microemulsion-Based Synthesis
La2NiO4+δ nanorods, synthesized via reverse microemulsion─a crystal facet engineering method─served as building blocks for developing oxygen transport membranes. Comparisons were drawn with ceramic membranes derived from commercial La2NiO4+δ nanoparticles. The membrane manufacturing process involved either conventional sintering or the field-assisted sintering technique/spark plasma sintering. The microstructure analysis of the initial powders and the resulting ceramics was thoroughly assessed by X-ray diffraction, scanning and transmission electron microscopy as well as energy-dispersive X-ray spectroscopy. As a consequence of the reaction conditions, the nanorods possess an orthorhombic crystal structure, with LaOBr present as a minor phase. Furthermore, the surface structure of the La2NiO4+δ nanorods was discerned via selected area electron diffraction, revealing a composition of (001)o-type and (11¯0)o-type facets on the sides and (110)o-type facets at the end, with additional facets observed between these surfaces. Among the sintering techniques, spark plasma sintering demonstrated superior performance, when applied to La2NiO4+δ nanorods, as it effectively preserved their rod-like nanostructure during the sintering process. The resulting nanorod-derived La2NiO4+δ ceramics exhibited excellent oxygen permeation, largely due to the large proportion of orthorhombic (11¯0)o-type surfaces in the rod-shaped grains, which correspond to tetragonal (010)t and (01¯0)t surfaces. The (11¯0)o-type facets facilitated the oxygen surface exchange, leading to improved oxygen permeation fluxes between 1023 and 1123 K compared to membranes derived from nanoparticles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
6.00%
发文量
810
期刊介绍: ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信