CuePD:通过个性化音乐提示加强老年人步态康复的物联网方法

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Conor Wall;Fraser Young;Peter McMeekin;Victoria Hetherington;Richard Walker;Rosie Morris;Gill Barry;Yunus Celik;Alan Godfrey
{"title":"CuePD:通过个性化音乐提示加强老年人步态康复的物联网方法","authors":"Conor Wall;Fraser Young;Peter McMeekin;Victoria Hetherington;Richard Walker;Rosie Morris;Gill Barry;Yunus Celik;Alan Godfrey","doi":"10.1109/LSENS.2024.3456855","DOIUrl":null,"url":null,"abstract":"Falls in people with Parkinson's disease (PwPD) under- score the need for precise sensing tools to robustly assess gait and deliver tailored rehabilitation. Using wearable inertial measurement units (IMUs) offers a practical alternative to assess gait and intervene in any location. This study develops a robust and innovative smartphone application/app that uses embedded IMU for real-time gait sensing to facilitate personalized cueing for targeted rehabilitation to reduce falls. Here, older adults had their \n<italic>CuePD</i>\n-based gait validated against a reference standard and were then exposed to different but personalized cueing modalities to target a 10.0% increase in cadence. \n<italic>CuePD</i>\n increased cadence by 8.3% and showed robust agreement with the reference before and after cueing as evidenced by strong Pearson correlation coefficients (≥0.843) and intraclass correlation coefficients (≥0.845) across clinically relevant temporal gait characteristics (e.g., step time). Gait sensing via a smartphone is robust and \n<italic>CuePD</i>\n indicates the feasibility of a scalable and personalized approach for targeted gait rehabilitation. Future research will extend to PwPD.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"8 10","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CuePD: An IoT Approach for Enhancing Gait Rehabilitation in Older Adults Through Personalized Music Cueing\",\"authors\":\"Conor Wall;Fraser Young;Peter McMeekin;Victoria Hetherington;Richard Walker;Rosie Morris;Gill Barry;Yunus Celik;Alan Godfrey\",\"doi\":\"10.1109/LSENS.2024.3456855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Falls in people with Parkinson's disease (PwPD) under- score the need for precise sensing tools to robustly assess gait and deliver tailored rehabilitation. Using wearable inertial measurement units (IMUs) offers a practical alternative to assess gait and intervene in any location. This study develops a robust and innovative smartphone application/app that uses embedded IMU for real-time gait sensing to facilitate personalized cueing for targeted rehabilitation to reduce falls. Here, older adults had their \\n<italic>CuePD</i>\\n-based gait validated against a reference standard and were then exposed to different but personalized cueing modalities to target a 10.0% increase in cadence. \\n<italic>CuePD</i>\\n increased cadence by 8.3% and showed robust agreement with the reference before and after cueing as evidenced by strong Pearson correlation coefficients (≥0.843) and intraclass correlation coefficients (≥0.845) across clinically relevant temporal gait characteristics (e.g., step time). Gait sensing via a smartphone is robust and \\n<italic>CuePD</i>\\n indicates the feasibility of a scalable and personalized approach for targeted gait rehabilitation. Future research will extend to PwPD.\",\"PeriodicalId\":13014,\"journal\":{\"name\":\"IEEE Sensors Letters\",\"volume\":\"8 10\",\"pages\":\"1-4\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10670208/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10670208/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

帕金森病(PwPD)患者的跌倒情况表明,需要精确的传感工具来对步态进行有力的评估,并提供量身定制的康复服务。使用可穿戴惯性测量单元(IMU)为评估步态和在任何地点进行干预提供了一种实用的替代方法。本研究开发了一款功能强大的创新型智能手机应用/应用程序,它使用嵌入式惯性测量单元进行实时步态感测,以促进个性化提示,进行有针对性的康复训练,从而减少跌倒。在这项研究中,老年人根据参考标准对其基于 CuePD 的步态进行了验证,然后接受了不同的个性化提示模式,目标是将步速提高 10.0%。CuePD使步调增加了8.3%,并在提示前后与参考标准显示出很强的一致性,这体现在与临床相关的时间步态特征(如步幅时间)上,有很强的皮尔逊相关系数(≥0.843)和类内相关系数(≥0.845)。通过智能手机进行步态传感是可靠的,CuePD 表明了一种可扩展的个性化方法在有针对性的步态康复方面的可行性。未来的研究将扩展到残疾人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CuePD: An IoT Approach for Enhancing Gait Rehabilitation in Older Adults Through Personalized Music Cueing
Falls in people with Parkinson's disease (PwPD) under- score the need for precise sensing tools to robustly assess gait and deliver tailored rehabilitation. Using wearable inertial measurement units (IMUs) offers a practical alternative to assess gait and intervene in any location. This study develops a robust and innovative smartphone application/app that uses embedded IMU for real-time gait sensing to facilitate personalized cueing for targeted rehabilitation to reduce falls. Here, older adults had their CuePD -based gait validated against a reference standard and were then exposed to different but personalized cueing modalities to target a 10.0% increase in cadence. CuePD increased cadence by 8.3% and showed robust agreement with the reference before and after cueing as evidenced by strong Pearson correlation coefficients (≥0.843) and intraclass correlation coefficients (≥0.845) across clinically relevant temporal gait characteristics (e.g., step time). Gait sensing via a smartphone is robust and CuePD indicates the feasibility of a scalable and personalized approach for targeted gait rehabilitation. Future research will extend to PwPD.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信