太赫兹光场成像中从粗到细的稀疏三维重建

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Abdulraouf Kutaish;Miguel Heredia Conde;Ullrich Pfeiffer
{"title":"太赫兹光场成像中从粗到细的稀疏三维重建","authors":"Abdulraouf Kutaish;Miguel Heredia Conde;Ullrich Pfeiffer","doi":"10.1109/LSENS.2024.3454567","DOIUrl":null,"url":null,"abstract":"Terahertz (THz) light field imaging inherently allows capturing the 3-D geometry of a target but at the cost of an increased data volume. Compressive sensing techniques are instrumental in minimizing data acquisition requirements. However, they often rely on computationally expensive sparse reconstruction approaches with high memory footprint. This research introduces an advanced coarse-to-fine (CTF) sparse 3-D reconstruction strategy aimed at enhancing the precision of reconstructed images while significantly reducing computational load and memory footprint. By employing a sequence of sensing matrices of increasing resolution, our approach avoids falling into an ill-conditioned inversion and strikes a balance between reconstruction quality and computational efficiency. We demonstrate the effectiveness of this CTF strategy through its integration with several established algorithms, including basis pursuit (BP), fast iterative shrinkage-threshold algorithm (FISTA), and others. The results showcase the potential of the CTF approach to improve 3-D image reconstruction accuracy and processing speed in THz light field imaging.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"8 10","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coarse-to-Fine Sparse 3-D Reconstruction in THz Light Field Imaging\",\"authors\":\"Abdulraouf Kutaish;Miguel Heredia Conde;Ullrich Pfeiffer\",\"doi\":\"10.1109/LSENS.2024.3454567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Terahertz (THz) light field imaging inherently allows capturing the 3-D geometry of a target but at the cost of an increased data volume. Compressive sensing techniques are instrumental in minimizing data acquisition requirements. However, they often rely on computationally expensive sparse reconstruction approaches with high memory footprint. This research introduces an advanced coarse-to-fine (CTF) sparse 3-D reconstruction strategy aimed at enhancing the precision of reconstructed images while significantly reducing computational load and memory footprint. By employing a sequence of sensing matrices of increasing resolution, our approach avoids falling into an ill-conditioned inversion and strikes a balance between reconstruction quality and computational efficiency. We demonstrate the effectiveness of this CTF strategy through its integration with several established algorithms, including basis pursuit (BP), fast iterative shrinkage-threshold algorithm (FISTA), and others. The results showcase the potential of the CTF approach to improve 3-D image reconstruction accuracy and processing speed in THz light field imaging.\",\"PeriodicalId\":13014,\"journal\":{\"name\":\"IEEE Sensors Letters\",\"volume\":\"8 10\",\"pages\":\"1-4\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10666001/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10666001/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

太赫兹(THz)光场成像技术本质上可以捕捉目标的三维几何形状,但代价是数据量的增加。压缩传感技术有助于最大限度地降低数据采集要求。然而,这些技术通常依赖于计算昂贵的稀疏重构方法,占用大量内存。这项研究引入了一种先进的粗到细(CTF)稀疏三维重建策略,旨在提高重建图像的精度,同时显著降低计算负荷和内存占用。通过采用一系列分辨率不断提高的传感矩阵,我们的方法避免了陷入条件不佳的反演,并在重建质量和计算效率之间取得了平衡。我们通过将 CTF 策略与几种成熟算法(包括基线追踪算法 (BP)、快速迭代收缩阈值算法 (FISTA) 等)的整合,展示了它的有效性。结果展示了 CTF 方法在太赫兹光场成像中提高三维图像重建精度和处理速度的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coarse-to-Fine Sparse 3-D Reconstruction in THz Light Field Imaging
Terahertz (THz) light field imaging inherently allows capturing the 3-D geometry of a target but at the cost of an increased data volume. Compressive sensing techniques are instrumental in minimizing data acquisition requirements. However, they often rely on computationally expensive sparse reconstruction approaches with high memory footprint. This research introduces an advanced coarse-to-fine (CTF) sparse 3-D reconstruction strategy aimed at enhancing the precision of reconstructed images while significantly reducing computational load and memory footprint. By employing a sequence of sensing matrices of increasing resolution, our approach avoids falling into an ill-conditioned inversion and strikes a balance between reconstruction quality and computational efficiency. We demonstrate the effectiveness of this CTF strategy through its integration with several established algorithms, including basis pursuit (BP), fast iterative shrinkage-threshold algorithm (FISTA), and others. The results showcase the potential of the CTF approach to improve 3-D image reconstruction accuracy and processing speed in THz light field imaging.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信