采用总压力变量的弱伽勒金有限元法用于毕奥特固结模型

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Hui Peng , Wenya Qi
{"title":"采用总压力变量的弱伽勒金有限元法用于毕奥特固结模型","authors":"Hui Peng ,&nbsp;Wenya Qi","doi":"10.1016/j.apnum.2024.09.017","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we develop a weak Galerkin method for the three-field Biot's consolidation model. The key idea is to consider the total pressure variable. We employ the stable pair of weak Galerkin finite elements to discretize the displacement and total pressure, and use totally discontinuous weak functions to approximate pressure in a semi-discrete scheme. Then, we give the fully discrete scheme based on the backward Euler method in time. Furthermore, we prove the well-posedness of the numerical schemes and derive the optimal error estimates for three variables in their nature norms. Our theoretical results are independent of the Lamé constant <em>λ</em> and the storage coefficient <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>. Finally, some experiments that employ different polynomial degrees and polygonal meshes are presented to demonstrate the efficiency and stability of the weak Galerkin method.</div></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weak Galerkin finite element method with the total pressure variable for Biot's consolidation model\",\"authors\":\"Hui Peng ,&nbsp;Wenya Qi\",\"doi\":\"10.1016/j.apnum.2024.09.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, we develop a weak Galerkin method for the three-field Biot's consolidation model. The key idea is to consider the total pressure variable. We employ the stable pair of weak Galerkin finite elements to discretize the displacement and total pressure, and use totally discontinuous weak functions to approximate pressure in a semi-discrete scheme. Then, we give the fully discrete scheme based on the backward Euler method in time. Furthermore, we prove the well-posedness of the numerical schemes and derive the optimal error estimates for three variables in their nature norms. Our theoretical results are independent of the Lamé constant <em>λ</em> and the storage coefficient <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>. Finally, some experiments that employ different polynomial degrees and polygonal meshes are presented to demonstrate the efficiency and stability of the weak Galerkin method.</div></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016892742400254X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016892742400254X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们为三场 Biot 固结模型开发了一种弱 Galerkin 方法。其关键思路是考虑总压力变量。我们采用一对稳定的弱 Galerkin 有限元对位移和总压进行离散,并使用完全不连续的弱函数在半离散方案中对压力进行近似。然后,我们给出了基于时间后向欧拉法的全离散方案。此外,我们还证明了数值方案的良好假设性,并推导出三个变量在其性质规范下的最优误差估计。我们的理论结果与拉梅常数 λ 和存储系数 c0 无关。最后,我们介绍了采用不同多项式度和多边形网格的一些实验,以证明弱 Galerkin 方法的效率和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weak Galerkin finite element method with the total pressure variable for Biot's consolidation model
In this work, we develop a weak Galerkin method for the three-field Biot's consolidation model. The key idea is to consider the total pressure variable. We employ the stable pair of weak Galerkin finite elements to discretize the displacement and total pressure, and use totally discontinuous weak functions to approximate pressure in a semi-discrete scheme. Then, we give the fully discrete scheme based on the backward Euler method in time. Furthermore, we prove the well-posedness of the numerical schemes and derive the optimal error estimates for three variables in their nature norms. Our theoretical results are independent of the Lamé constant λ and the storage coefficient c0. Finally, some experiments that employ different polynomial degrees and polygonal meshes are presented to demonstrate the efficiency and stability of the weak Galerkin method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信