线性激光扫描测量中复杂条纹的增强型中心线提取算法

IF 3.5 2区 工程技术 Q2 ENGINEERING, MANUFACTURING
Haiyu Zhao , Xiaojun Liu , Shuai Wang , Kuan Diao , Chen Luo
{"title":"线性激光扫描测量中复杂条纹的增强型中心线提取算法","authors":"Haiyu Zhao ,&nbsp;Xiaojun Liu ,&nbsp;Shuai Wang ,&nbsp;Kuan Diao ,&nbsp;Chen Luo","doi":"10.1016/j.precisioneng.2024.09.006","DOIUrl":null,"url":null,"abstract":"<div><div>Centerline extraction is a basic and critical step for linear laser scanning measurement. However, in practical measurement, the inconsistent reflectivity of the measured surface and the external noise interference can result in complex variation of the stripe pattern, which will influence the centerline extraction accuracy of the stripe pattern and hence the measurement accuracy of the laser scanner. To solve this problem, an enhanced centerline extraction algorithm for complex laser stripes is proposed. In the preprocessing of the stripe pattern, a region separation strategy is employed to mitigate the effects of complex variations, and multi-region self-adaptive convolution is adopted to enhance the stripe pattern quality. For high-precision extraction of the stripe centerline, different convolution kernels are applied to compute the Hessian matrix for the stripe patterns in different regions to determine the normal direction of the laser line. The second order Taylor expansion is performed along this direction to work with the denoising algorithm to determine the subpixel positions of the center points on the line, and then the whole centerline of the stripe pattern is obtained by piecewise cubic Hermite interpolation methods. Experimental results show that the effectiveness of the proposed algorithm in addressing centerline extraction for complex laser stripe patterns due to stray light interference, reflective stripes, and laser stripe linewidth changes in laser scanning measurement.</div></div>","PeriodicalId":54589,"journal":{"name":"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology","volume":"91 ","pages":"Pages 199-211"},"PeriodicalIF":3.5000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An enhanced centerline extraction algorithm for complex stripes in linear laser scanning measurement\",\"authors\":\"Haiyu Zhao ,&nbsp;Xiaojun Liu ,&nbsp;Shuai Wang ,&nbsp;Kuan Diao ,&nbsp;Chen Luo\",\"doi\":\"10.1016/j.precisioneng.2024.09.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Centerline extraction is a basic and critical step for linear laser scanning measurement. However, in practical measurement, the inconsistent reflectivity of the measured surface and the external noise interference can result in complex variation of the stripe pattern, which will influence the centerline extraction accuracy of the stripe pattern and hence the measurement accuracy of the laser scanner. To solve this problem, an enhanced centerline extraction algorithm for complex laser stripes is proposed. In the preprocessing of the stripe pattern, a region separation strategy is employed to mitigate the effects of complex variations, and multi-region self-adaptive convolution is adopted to enhance the stripe pattern quality. For high-precision extraction of the stripe centerline, different convolution kernels are applied to compute the Hessian matrix for the stripe patterns in different regions to determine the normal direction of the laser line. The second order Taylor expansion is performed along this direction to work with the denoising algorithm to determine the subpixel positions of the center points on the line, and then the whole centerline of the stripe pattern is obtained by piecewise cubic Hermite interpolation methods. Experimental results show that the effectiveness of the proposed algorithm in addressing centerline extraction for complex laser stripe patterns due to stray light interference, reflective stripes, and laser stripe linewidth changes in laser scanning measurement.</div></div>\",\"PeriodicalId\":54589,\"journal\":{\"name\":\"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology\",\"volume\":\"91 \",\"pages\":\"Pages 199-211\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S014163592400206X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S014163592400206X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

中心线提取是线性激光扫描测量的基本和关键步骤。然而,在实际测量中,被测表面的反射率不一致和外部噪声干扰会导致条纹图案的复杂变化,从而影响条纹图案的中心线提取精度,进而影响激光扫描仪的测量精度。为解决这一问题,本文提出了一种针对复杂激光条纹的增强型中心线提取算法。在条纹图案的预处理中,采用了区域分离策略来减轻复杂变化的影响,并采用多区域自适应卷积来提高条纹图案的质量。为了高精度地提取条纹中心线,采用不同的卷积核计算不同区域条纹图案的 Hessian 矩阵,以确定激光线的法线方向。沿此方向进行二阶泰勒展开,配合去噪算法确定激光线上中心点的子像素位置,然后通过片断立方赫米特插值方法得到整个条纹图案的中心线。实验结果表明,所提出的算法能有效解决激光扫描测量中由于杂散光干扰、反射条纹和激光条纹线宽变化等原因造成的复杂激光条纹图案的中心线提取问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An enhanced centerline extraction algorithm for complex stripes in linear laser scanning measurement
Centerline extraction is a basic and critical step for linear laser scanning measurement. However, in practical measurement, the inconsistent reflectivity of the measured surface and the external noise interference can result in complex variation of the stripe pattern, which will influence the centerline extraction accuracy of the stripe pattern and hence the measurement accuracy of the laser scanner. To solve this problem, an enhanced centerline extraction algorithm for complex laser stripes is proposed. In the preprocessing of the stripe pattern, a region separation strategy is employed to mitigate the effects of complex variations, and multi-region self-adaptive convolution is adopted to enhance the stripe pattern quality. For high-precision extraction of the stripe centerline, different convolution kernels are applied to compute the Hessian matrix for the stripe patterns in different regions to determine the normal direction of the laser line. The second order Taylor expansion is performed along this direction to work with the denoising algorithm to determine the subpixel positions of the center points on the line, and then the whole centerline of the stripe pattern is obtained by piecewise cubic Hermite interpolation methods. Experimental results show that the effectiveness of the proposed algorithm in addressing centerline extraction for complex laser stripe patterns due to stray light interference, reflective stripes, and laser stripe linewidth changes in laser scanning measurement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.40
自引率
5.60%
发文量
177
审稿时长
46 days
期刊介绍: Precision Engineering - Journal of the International Societies for Precision Engineering and Nanotechnology is devoted to the multidisciplinary study and practice of high accuracy engineering, metrology, and manufacturing. The journal takes an integrated approach to all subjects related to research, design, manufacture, performance validation, and application of high precision machines, instruments, and components, including fundamental and applied research and development in manufacturing processes, fabrication technology, and advanced measurement science. The scope includes precision-engineered systems and supporting metrology over the full range of length scales, from atom-based nanotechnology and advanced lithographic technology to large-scale systems, including optical and radio telescopes and macrometrology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信