处理具有不连续系数和狄拉克曲线源的三维扩散问题

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
E. Bejaoui, F. Ben Belgacem
{"title":"处理具有不连续系数和狄拉克曲线源的三维扩散问题","authors":"E. Bejaoui,&nbsp;F. Ben Belgacem","doi":"10.1016/j.apnum.2024.09.012","DOIUrl":null,"url":null,"abstract":"<div><div>Three-dimensional diffusion problems with discontinuous coefficients and unidimensional Dirac sources arise in a number of fields. The statement we pursue is a singular-regular expansion where the singularity, capturing the stiff behavior of the potential, is expressed by a convolution formula using the Green kernel of the Laplace operator. The correction term, aimed at restoring the boundary conditions, fulfills a variational Poisson equation set in the Sobolev space <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>, which can be approximated using finite element methods. The mathematical justification of the proposed expansion is the main focus, particularly when the variable diffusion coefficients are continuous, or have jumps. A computational study concludes the paper with some numerical examples. The potential is approximated by a combined method: (singularity, by integral formulas, correction, by linear finite elements). The convergence is discussed to highlight the practical benefits brought by different expansions, for continuous and discontinuous coefficients.</div></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Treatment of 3D diffusion problems with discontinuous coefficients and Dirac curvilinear sources\",\"authors\":\"E. Bejaoui,&nbsp;F. Ben Belgacem\",\"doi\":\"10.1016/j.apnum.2024.09.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Three-dimensional diffusion problems with discontinuous coefficients and unidimensional Dirac sources arise in a number of fields. The statement we pursue is a singular-regular expansion where the singularity, capturing the stiff behavior of the potential, is expressed by a convolution formula using the Green kernel of the Laplace operator. The correction term, aimed at restoring the boundary conditions, fulfills a variational Poisson equation set in the Sobolev space <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>, which can be approximated using finite element methods. The mathematical justification of the proposed expansion is the main focus, particularly when the variable diffusion coefficients are continuous, or have jumps. A computational study concludes the paper with some numerical examples. The potential is approximated by a combined method: (singularity, by integral formulas, correction, by linear finite elements). The convergence is discussed to highlight the practical benefits brought by different expansions, for continuous and discontinuous coefficients.</div></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927424002502\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424002502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

三维扩散问题具有不连续系数和单维狄拉克源,出现在许多领域。我们所追求的是一种奇异正则展开,其中的奇异性捕捉到了势的僵硬行为,通过使用拉普拉斯算子的格林核的卷积公式来表达。校正项旨在恢复边界条件,满足索波列夫空间 H1 中的变式泊松方程组,可使用有限元方法对其进行近似。本文的重点是对所提出的扩展进行数学论证,尤其是当可变扩散系数是连续的或具有跳跃性时。本文最后通过一些数值实例对计算进行了研究。电势近似采用了一种组合方法:(奇异性、积分公式、修正、线性有限元)。本文对收敛性进行了讨论,以突出不同展开式对连续和不连续系数带来的实际好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Treatment of 3D diffusion problems with discontinuous coefficients and Dirac curvilinear sources
Three-dimensional diffusion problems with discontinuous coefficients and unidimensional Dirac sources arise in a number of fields. The statement we pursue is a singular-regular expansion where the singularity, capturing the stiff behavior of the potential, is expressed by a convolution formula using the Green kernel of the Laplace operator. The correction term, aimed at restoring the boundary conditions, fulfills a variational Poisson equation set in the Sobolev space H1, which can be approximated using finite element methods. The mathematical justification of the proposed expansion is the main focus, particularly when the variable diffusion coefficients are continuous, or have jumps. A computational study concludes the paper with some numerical examples. The potential is approximated by a combined method: (singularity, by integral formulas, correction, by linear finite elements). The convergence is discussed to highlight the practical benefits brought by different expansions, for continuous and discontinuous coefficients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信