{"title":"基于动态硼酸酯的坚韧、高强度、阻燃和可回收聚氨酯弹性体","authors":"","doi":"10.1016/j.reactfunctpolym.2024.106056","DOIUrl":null,"url":null,"abstract":"<div><div>With the wide application of polyurethane elastomers, it is necessary to develop recyclable, fire-retardant polyurethane elastomers with great mechanical properties to comply with industrial requirements. Herein, we fabricated a flame-retardant, recyclable, strong yet tough polyurethane elastomer (PIDB-1) based on dynamic borate acid esters. The introduction of phosphaphenanthrene and boron-containing groups endow PIDB-1 with great flame retardancy, as reflected by it achieving the vertical burning (UL-94) <em>V</em>-0 rating. The PIDB-1 film shows high visible light transmittance, and its transmittance reaches 90 % at the wavelength of 800 to 900 nm. The tensile strength of PIDB-1 is 54.9 MPa, and its toughness reaches 207.8 kJ/m<sup>3</sup>, indicative of superior mechanical properties. Meanwhile, the dynamic borate acid esters allow the PIDB-1 elastomer to possess physical and chemical recyclability. When using PIDB-1 as a polymer matrix for carbon fiber-reinforced polymer composites, the carbon fibers can be fully recycled. This work provides an integrated design strategy for creating transparent, flame-retardant, recyclable polyurethane elastomers combining high strength and toughness based on dynamic borate ester bonds, which is expected to find wide applications in different industries.</div></div>","PeriodicalId":20916,"journal":{"name":"Reactive & Functional Polymers","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1381514824002311/pdfft?md5=bd05a46010363b5a2b88d6f61dedc2b8&pid=1-s2.0-S1381514824002311-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Tough, high-strength, flame-retardant and recyclable polyurethane elastomers based on dynamic borate acid esters\",\"authors\":\"\",\"doi\":\"10.1016/j.reactfunctpolym.2024.106056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With the wide application of polyurethane elastomers, it is necessary to develop recyclable, fire-retardant polyurethane elastomers with great mechanical properties to comply with industrial requirements. Herein, we fabricated a flame-retardant, recyclable, strong yet tough polyurethane elastomer (PIDB-1) based on dynamic borate acid esters. The introduction of phosphaphenanthrene and boron-containing groups endow PIDB-1 with great flame retardancy, as reflected by it achieving the vertical burning (UL-94) <em>V</em>-0 rating. The PIDB-1 film shows high visible light transmittance, and its transmittance reaches 90 % at the wavelength of 800 to 900 nm. The tensile strength of PIDB-1 is 54.9 MPa, and its toughness reaches 207.8 kJ/m<sup>3</sup>, indicative of superior mechanical properties. Meanwhile, the dynamic borate acid esters allow the PIDB-1 elastomer to possess physical and chemical recyclability. When using PIDB-1 as a polymer matrix for carbon fiber-reinforced polymer composites, the carbon fibers can be fully recycled. This work provides an integrated design strategy for creating transparent, flame-retardant, recyclable polyurethane elastomers combining high strength and toughness based on dynamic borate ester bonds, which is expected to find wide applications in different industries.</div></div>\",\"PeriodicalId\":20916,\"journal\":{\"name\":\"Reactive & Functional Polymers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1381514824002311/pdfft?md5=bd05a46010363b5a2b88d6f61dedc2b8&pid=1-s2.0-S1381514824002311-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reactive & Functional Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1381514824002311\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reactive & Functional Polymers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1381514824002311","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Tough, high-strength, flame-retardant and recyclable polyurethane elastomers based on dynamic borate acid esters
With the wide application of polyurethane elastomers, it is necessary to develop recyclable, fire-retardant polyurethane elastomers with great mechanical properties to comply with industrial requirements. Herein, we fabricated a flame-retardant, recyclable, strong yet tough polyurethane elastomer (PIDB-1) based on dynamic borate acid esters. The introduction of phosphaphenanthrene and boron-containing groups endow PIDB-1 with great flame retardancy, as reflected by it achieving the vertical burning (UL-94) V-0 rating. The PIDB-1 film shows high visible light transmittance, and its transmittance reaches 90 % at the wavelength of 800 to 900 nm. The tensile strength of PIDB-1 is 54.9 MPa, and its toughness reaches 207.8 kJ/m3, indicative of superior mechanical properties. Meanwhile, the dynamic borate acid esters allow the PIDB-1 elastomer to possess physical and chemical recyclability. When using PIDB-1 as a polymer matrix for carbon fiber-reinforced polymer composites, the carbon fibers can be fully recycled. This work provides an integrated design strategy for creating transparent, flame-retardant, recyclable polyurethane elastomers combining high strength and toughness based on dynamic borate ester bonds, which is expected to find wide applications in different industries.
期刊介绍:
Reactive & Functional Polymers provides a forum to disseminate original ideas, concepts and developments in the science and technology of polymers with functional groups, which impart specific chemical reactivity or physical, chemical, structural, biological, and pharmacological functionality. The scope covers organic polymers, acting for instance as reagents, catalysts, templates, ion-exchangers, selective sorbents, chelating or antimicrobial agents, drug carriers, sensors, membranes, and hydrogels. This also includes reactive cross-linkable prepolymers and high-performance thermosetting polymers, natural or degradable polymers, conducting polymers, and porous polymers.
Original research articles must contain thorough molecular and material characterization data on synthesis of the above polymers in combination with their applications. Applications include but are not limited to catalysis, water or effluent treatment, separations and recovery, electronics and information storage, energy conversion, encapsulation, or adhesion.