{"title":"Musielak-Orlicz-Sobolev 空间 W1,Φ(Ω) 中紧凑支撑的光滑函数 CC∞(Rd)的密度","authors":"Anna Kamińska , Mariusz Żyluk","doi":"10.1016/j.jfa.2024.110677","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate here the density of the set of the restrictions from <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mi>C</mi></mrow><mrow><mo>∞</mo></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> to <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mi>C</mi></mrow><mrow><mo>∞</mo></mrow></msubsup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> in the Musielak-Orlicz-Sobolev space <span><math><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>Φ</mi></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span>. It is a continuation of article <span><span>[15]</span></span>, where we have studied density of <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mi>C</mi></mrow><mrow><mo>∞</mo></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> in <span><math><msup><mrow><mi>W</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>Φ</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> for <span><math><mi>k</mi><mo>∈</mo><mi>N</mi></math></span>. The main theorem states that for an open subset <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> with its boundary of class <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>, and Musielak-Orlicz function Φ satisfying condition (A1) which is a sort of log-Hölder continuity and the growth condition <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, the set of restrictions of functions from <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mi>C</mi></mrow><mrow><mo>∞</mo></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> to Ω is dense in <span><math><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>Φ</mi></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span>. We obtain a corresponding result in variable exponent Sobolev space <span><math><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi><mo>(</mo><mo>⋅</mo><mo>)</mo></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> under the assumption that the exponent <span><math><mi>p</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> is essentially bounded on Ω and <span><math><mi>Φ</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>t</mi></mrow><mrow><mi>p</mi><mo>(</mo><mi>x</mi><mo>)</mo></mrow></msup></math></span>, <span><math><mi>t</mi><mo>≥</mo><mn>0</mn></math></span>, <span><math><mi>x</mi><mo>∈</mo><mi>Ω</mi></math></span>, satisfies the log-Hölder condition.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Density of compactly supported smooth functions CC∞(Rd) in Musielak-Orlicz-Sobolev spaces W1,Φ(Ω)\",\"authors\":\"Anna Kamińska , Mariusz Żyluk\",\"doi\":\"10.1016/j.jfa.2024.110677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We investigate here the density of the set of the restrictions from <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mi>C</mi></mrow><mrow><mo>∞</mo></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> to <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mi>C</mi></mrow><mrow><mo>∞</mo></mrow></msubsup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> in the Musielak-Orlicz-Sobolev space <span><math><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>Φ</mi></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span>. It is a continuation of article <span><span>[15]</span></span>, where we have studied density of <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mi>C</mi></mrow><mrow><mo>∞</mo></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> in <span><math><msup><mrow><mi>W</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>Φ</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> for <span><math><mi>k</mi><mo>∈</mo><mi>N</mi></math></span>. The main theorem states that for an open subset <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> with its boundary of class <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>, and Musielak-Orlicz function Φ satisfying condition (A1) which is a sort of log-Hölder continuity and the growth condition <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, the set of restrictions of functions from <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mi>C</mi></mrow><mrow><mo>∞</mo></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> to Ω is dense in <span><math><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>Φ</mi></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span>. We obtain a corresponding result in variable exponent Sobolev space <span><math><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi><mo>(</mo><mo>⋅</mo><mo>)</mo></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> under the assumption that the exponent <span><math><mi>p</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> is essentially bounded on Ω and <span><math><mi>Φ</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>t</mi></mrow><mrow><mi>p</mi><mo>(</mo><mi>x</mi><mo>)</mo></mrow></msup></math></span>, <span><math><mi>t</mi><mo>≥</mo><mn>0</mn></math></span>, <span><math><mi>x</mi><mo>∈</mo><mi>Ω</mi></math></span>, satisfies the log-Hölder condition.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123624003653\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624003653","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Density of compactly supported smooth functions CC∞(Rd) in Musielak-Orlicz-Sobolev spaces W1,Φ(Ω)
We investigate here the density of the set of the restrictions from to in the Musielak-Orlicz-Sobolev space . It is a continuation of article [15], where we have studied density of in for . The main theorem states that for an open subset with its boundary of class , and Musielak-Orlicz function Φ satisfying condition (A1) which is a sort of log-Hölder continuity and the growth condition , the set of restrictions of functions from to Ω is dense in . We obtain a corresponding result in variable exponent Sobolev space under the assumption that the exponent is essentially bounded on Ω and , , , satisfies the log-Hölder condition.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis