{"title":"具有奇异势和平方可积分数据的非光滑薛定谔方程的可解性","authors":"Andrew J. Morris, Andrew J. Turner","doi":"10.1016/j.jfa.2024.110680","DOIUrl":null,"url":null,"abstract":"<div><div>We develop a holomorphic functional calculus for first-order operators <em>DB</em> to solve boundary value problems for Schrödinger equations <span><math><mo>−</mo><mi>div</mi><mspace></mspace><mi>A</mi><mi>∇</mi><mi>u</mi><mo>+</mo><mi>a</mi><mi>V</mi><mi>u</mi><mo>=</mo><mn>0</mn></math></span> in the upper half-space <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msubsup></math></span> with <span><math><mi>n</mi><mo>∈</mo><mi>N</mi></math></span>. This relies on quadratic estimates for <em>DB</em>, which are proved for coefficients <span><math><mi>A</mi><mo>,</mo><mi>a</mi><mo>,</mo><mi>V</mi></math></span> that are independent of the transversal direction to the boundary, and comprised of a complex-elliptic pair <span><math><mo>(</mo><mi>A</mi><mo>,</mo><mi>a</mi><mo>)</mo></math></span> that are bounded and measurable, and a singular potential <em>V</em> in either <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>n</mi><mo>/</mo><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> or the reverse Hölder class <span><math><msup><mrow><mi>B</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> with <span><math><mi>q</mi><mo>≥</mo><mi>max</mi><mo></mo><mo>{</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mn>2</mn><mo>}</mo></math></span>. In the latter case, square function bounds are also shown to be equivalent to non-tangential maximal function bounds. This allows us to prove that the (Dirichlet) Regularity and Neumann boundary value problems with <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>-data are well-posed if and only if certain boundary trace operators defined by the functional calculus are isomorphisms. We prove this property when the principal coefficient matrix <em>A</em> has either a Hermitian or block structure. More generally, the set of all complex coefficients for which the boundary value problems are well-posed is shown to be open.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 1","pages":"Article 110680"},"PeriodicalIF":1.7000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022123624003689/pdfft?md5=6d3edebd34056c1c291ac6d370cafe17&pid=1-s2.0-S0022123624003689-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Solvability for non-smooth Schrödinger equations with singular potentials and square integrable data\",\"authors\":\"Andrew J. Morris, Andrew J. Turner\",\"doi\":\"10.1016/j.jfa.2024.110680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We develop a holomorphic functional calculus for first-order operators <em>DB</em> to solve boundary value problems for Schrödinger equations <span><math><mo>−</mo><mi>div</mi><mspace></mspace><mi>A</mi><mi>∇</mi><mi>u</mi><mo>+</mo><mi>a</mi><mi>V</mi><mi>u</mi><mo>=</mo><mn>0</mn></math></span> in the upper half-space <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msubsup></math></span> with <span><math><mi>n</mi><mo>∈</mo><mi>N</mi></math></span>. This relies on quadratic estimates for <em>DB</em>, which are proved for coefficients <span><math><mi>A</mi><mo>,</mo><mi>a</mi><mo>,</mo><mi>V</mi></math></span> that are independent of the transversal direction to the boundary, and comprised of a complex-elliptic pair <span><math><mo>(</mo><mi>A</mi><mo>,</mo><mi>a</mi><mo>)</mo></math></span> that are bounded and measurable, and a singular potential <em>V</em> in either <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>n</mi><mo>/</mo><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> or the reverse Hölder class <span><math><msup><mrow><mi>B</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> with <span><math><mi>q</mi><mo>≥</mo><mi>max</mi><mo></mo><mo>{</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mn>2</mn><mo>}</mo></math></span>. In the latter case, square function bounds are also shown to be equivalent to non-tangential maximal function bounds. This allows us to prove that the (Dirichlet) Regularity and Neumann boundary value problems with <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>-data are well-posed if and only if certain boundary trace operators defined by the functional calculus are isomorphisms. We prove this property when the principal coefficient matrix <em>A</em> has either a Hermitian or block structure. More generally, the set of all complex coefficients for which the boundary value problems are well-posed is shown to be open.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"288 1\",\"pages\":\"Article 110680\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022123624003689/pdfft?md5=6d3edebd34056c1c291ac6d370cafe17&pid=1-s2.0-S0022123624003689-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123624003689\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624003689","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们开发了一阶算子 DB 的全形函数微积分,以解决上半空间 R+n+1 中 n∈N 的薛定谔方程 -divA∇u+aVu=0 的边界值问题。这依赖于对 DB 的二次估计,其系数 A,a,V 与边界横向方向无关,由有界可测的复椭圆对 (A,a) 和 Ln/2(Rn)或反向荷尔德类 Bq(Rn)(q≥max{n2,2})中的奇异势 V 组成。在后一种情况下,平方函数边界也被证明等价于非切线最大函数边界。这使我们能够证明,当且仅当某些由函数微积分定义的边界迹算子是同构的时候,具有 L2(Rn)-data 的(狄利克特)正则性和诺伊曼边界值问题是好求的。当主系数矩阵 A 具有赫米特结构或块结构时,我们将证明这一性质。更广义地说,边界值问题得到很好解决的所有复系数集合是开放的。
Solvability for non-smooth Schrödinger equations with singular potentials and square integrable data
We develop a holomorphic functional calculus for first-order operators DB to solve boundary value problems for Schrödinger equations in the upper half-space with . This relies on quadratic estimates for DB, which are proved for coefficients that are independent of the transversal direction to the boundary, and comprised of a complex-elliptic pair that are bounded and measurable, and a singular potential V in either or the reverse Hölder class with . In the latter case, square function bounds are also shown to be equivalent to non-tangential maximal function bounds. This allows us to prove that the (Dirichlet) Regularity and Neumann boundary value problems with -data are well-posed if and only if certain boundary trace operators defined by the functional calculus are isomorphisms. We prove this property when the principal coefficient matrix A has either a Hermitian or block structure. More generally, the set of all complex coefficients for which the boundary value problems are well-posed is shown to be open.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis