{"title":"Cd 单位球上算子值函数的道格拉斯-鲁丁近似定理","authors":"Poornendu Kumar , Shubham Rastogi , Raghavendra Tripathi","doi":"10.1016/j.jfa.2024.110685","DOIUrl":null,"url":null,"abstract":"<div><div>Douglas and Rudin proved that any unimodular function on the unit circle <span><math><mi>T</mi></math></span> can be uniformly approximated by quotients of inner functions. We extend this result to the operator-valued unimodular functions defined on the boundary of the open unit ball of <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>. Our proof technique combines the spectral theorem for unitary operators with the Douglas-Rudin theorem in the scalar case to bootstrap the result to the operator-valued case. This yields a new proof and a significant generalization of Barclay's result (2009) <span><span>[4]</span></span> on the approximation of matrix-valued unimodular functions on <span><math><mi>T</mi></math></span>.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Douglas-Rudin approximation theorem for operator-valued functions on the unit ball of Cd\",\"authors\":\"Poornendu Kumar , Shubham Rastogi , Raghavendra Tripathi\",\"doi\":\"10.1016/j.jfa.2024.110685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Douglas and Rudin proved that any unimodular function on the unit circle <span><math><mi>T</mi></math></span> can be uniformly approximated by quotients of inner functions. We extend this result to the operator-valued unimodular functions defined on the boundary of the open unit ball of <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>. Our proof technique combines the spectral theorem for unitary operators with the Douglas-Rudin theorem in the scalar case to bootstrap the result to the operator-valued case. This yields a new proof and a significant generalization of Barclay's result (2009) <span><span>[4]</span></span> on the approximation of matrix-valued unimodular functions on <span><math><mi>T</mi></math></span>.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123624003732\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624003732","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
道格拉斯和鲁丁证明,单位圆 T 上的任何单调函数都可以通过内函数的商均匀逼近。我们将这一结果推广到定义在 Cd 的开放单位球边界上的算子值单模函数。我们的证明技术结合了单元算子的谱定理和标量情况下的道格拉斯-鲁丁定理,将结果引导到算子值情况。这就产生了一个新的证明,也是对 Barclay 关于 T 上矩阵值单模函数逼近的结果(2009 年)[4] 的重要推广。
Douglas-Rudin approximation theorem for operator-valued functions on the unit ball of Cd
Douglas and Rudin proved that any unimodular function on the unit circle can be uniformly approximated by quotients of inner functions. We extend this result to the operator-valued unimodular functions defined on the boundary of the open unit ball of . Our proof technique combines the spectral theorem for unitary operators with the Douglas-Rudin theorem in the scalar case to bootstrap the result to the operator-valued case. This yields a new proof and a significant generalization of Barclay's result (2009) [4] on the approximation of matrix-valued unimodular functions on .
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis