Cd 单位球上算子值函数的道格拉斯-鲁丁近似定理

IF 1.7 2区 数学 Q1 MATHEMATICS
Poornendu Kumar , Shubham Rastogi , Raghavendra Tripathi
{"title":"Cd 单位球上算子值函数的道格拉斯-鲁丁近似定理","authors":"Poornendu Kumar ,&nbsp;Shubham Rastogi ,&nbsp;Raghavendra Tripathi","doi":"10.1016/j.jfa.2024.110685","DOIUrl":null,"url":null,"abstract":"<div><div>Douglas and Rudin proved that any unimodular function on the unit circle <span><math><mi>T</mi></math></span> can be uniformly approximated by quotients of inner functions. We extend this result to the operator-valued unimodular functions defined on the boundary of the open unit ball of <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>. Our proof technique combines the spectral theorem for unitary operators with the Douglas-Rudin theorem in the scalar case to bootstrap the result to the operator-valued case. This yields a new proof and a significant generalization of Barclay's result (2009) <span><span>[4]</span></span> on the approximation of matrix-valued unimodular functions on <span><math><mi>T</mi></math></span>.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 1","pages":"Article 110685"},"PeriodicalIF":1.7000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Douglas-Rudin approximation theorem for operator-valued functions on the unit ball of Cd\",\"authors\":\"Poornendu Kumar ,&nbsp;Shubham Rastogi ,&nbsp;Raghavendra Tripathi\",\"doi\":\"10.1016/j.jfa.2024.110685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Douglas and Rudin proved that any unimodular function on the unit circle <span><math><mi>T</mi></math></span> can be uniformly approximated by quotients of inner functions. We extend this result to the operator-valued unimodular functions defined on the boundary of the open unit ball of <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>. Our proof technique combines the spectral theorem for unitary operators with the Douglas-Rudin theorem in the scalar case to bootstrap the result to the operator-valued case. This yields a new proof and a significant generalization of Barclay's result (2009) <span><span>[4]</span></span> on the approximation of matrix-valued unimodular functions on <span><math><mi>T</mi></math></span>.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"288 1\",\"pages\":\"Article 110685\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123624003732\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624003732","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

道格拉斯和鲁丁证明,单位圆 T 上的任何单调函数都可以通过内函数的商均匀逼近。我们将这一结果推广到定义在 Cd 的开放单位球边界上的算子值单模函数。我们的证明技术结合了单元算子的谱定理和标量情况下的道格拉斯-鲁丁定理,将结果引导到算子值情况。这就产生了一个新的证明,也是对 Barclay 关于 T 上矩阵值单模函数逼近的结果(2009 年)[4] 的重要推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Douglas-Rudin approximation theorem for operator-valued functions on the unit ball of Cd
Douglas and Rudin proved that any unimodular function on the unit circle T can be uniformly approximated by quotients of inner functions. We extend this result to the operator-valued unimodular functions defined on the boundary of the open unit ball of Cd. Our proof technique combines the spectral theorem for unitary operators with the Douglas-Rudin theorem in the scalar case to bootstrap the result to the operator-valued case. This yields a new proof and a significant generalization of Barclay's result (2009) [4] on the approximation of matrix-valued unimodular functions on T.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信