{"title":"退化椭圆度量的绝对连续性","authors":"Mingming Cao , Kôzô Yabuta","doi":"10.1016/j.jfa.2024.110673","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span> be an open set whose boundary may be composed of pieces of different dimensions. Assume that Ω satisfies the quantitative openness and connectedness, and there exist doubling measures <em>m</em> on Ω and <em>μ</em> on ∂Ω with appropriate size conditions. Let <span><math><mi>L</mi><mi>u</mi><mo>=</mo><mo>−</mo><mi>div</mi><mo>(</mo><mi>A</mi><mi>∇</mi><mi>u</mi><mo>)</mo></math></span> be a real (not necessarily symmetric) degenerate elliptic operator in Ω. Write <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mi>L</mi></mrow></msub></math></span> for the associated degenerate elliptic measure. We establish the equivalence between the following properties: (i) <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mi>L</mi></mrow></msub><mo>∈</mo><msub><mrow><mi>A</mi></mrow><mrow><mo>∞</mo></mrow></msub><mo>(</mo><mi>μ</mi><mo>)</mo></math></span>, (ii) the Dirichlet problem for <em>L</em> is solvable in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>μ</mi><mo>)</mo></math></span> for some <span><math><mi>p</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>, (iii) every bounded null solution of <em>L</em> satisfies Carleson measure estimates with respect to <em>μ</em>, (iv) the conical square function is controlled by the non-tangential maximal function in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>(</mo><mi>μ</mi><mo>)</mo></math></span> for all <span><math><mi>q</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span> for any null solution of <em>L</em>, and (v) the Dirichlet problem for <em>L</em> is solvable in <span><math><mi>BMO</mi><mo>(</mo><mi>μ</mi><mo>)</mo></math></span>. On the other hand, we obtain a qualitative analogy of the previous equivalence. Indeed, we characterize the absolute continuity of <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mi>L</mi></mrow></msub></math></span> with respect to <em>μ</em> in terms of local <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>μ</mi><mo>)</mo></math></span> estimates of the truncated conical square function for any bounded null solution of <em>L</em>. This is also equivalent to the finiteness <em>μ</em>-almost everywhere of the truncated conical square function for any bounded null solution of <em>L</em>.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 1","pages":"Article 110673"},"PeriodicalIF":1.7000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022123624003616/pdfft?md5=768991f70c40bd283f96e3c4b9cba196&pid=1-s2.0-S0022123624003616-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Absolute continuity of degenerate elliptic measure\",\"authors\":\"Mingming Cao , Kôzô Yabuta\",\"doi\":\"10.1016/j.jfa.2024.110673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span> be an open set whose boundary may be composed of pieces of different dimensions. Assume that Ω satisfies the quantitative openness and connectedness, and there exist doubling measures <em>m</em> on Ω and <em>μ</em> on ∂Ω with appropriate size conditions. Let <span><math><mi>L</mi><mi>u</mi><mo>=</mo><mo>−</mo><mi>div</mi><mo>(</mo><mi>A</mi><mi>∇</mi><mi>u</mi><mo>)</mo></math></span> be a real (not necessarily symmetric) degenerate elliptic operator in Ω. Write <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mi>L</mi></mrow></msub></math></span> for the associated degenerate elliptic measure. We establish the equivalence between the following properties: (i) <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mi>L</mi></mrow></msub><mo>∈</mo><msub><mrow><mi>A</mi></mrow><mrow><mo>∞</mo></mrow></msub><mo>(</mo><mi>μ</mi><mo>)</mo></math></span>, (ii) the Dirichlet problem for <em>L</em> is solvable in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>μ</mi><mo>)</mo></math></span> for some <span><math><mi>p</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>, (iii) every bounded null solution of <em>L</em> satisfies Carleson measure estimates with respect to <em>μ</em>, (iv) the conical square function is controlled by the non-tangential maximal function in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>(</mo><mi>μ</mi><mo>)</mo></math></span> for all <span><math><mi>q</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span> for any null solution of <em>L</em>, and (v) the Dirichlet problem for <em>L</em> is solvable in <span><math><mi>BMO</mi><mo>(</mo><mi>μ</mi><mo>)</mo></math></span>. On the other hand, we obtain a qualitative analogy of the previous equivalence. Indeed, we characterize the absolute continuity of <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mi>L</mi></mrow></msub></math></span> with respect to <em>μ</em> in terms of local <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>μ</mi><mo>)</mo></math></span> estimates of the truncated conical square function for any bounded null solution of <em>L</em>. This is also equivalent to the finiteness <em>μ</em>-almost everywhere of the truncated conical square function for any bounded null solution of <em>L</em>.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"288 1\",\"pages\":\"Article 110673\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022123624003616/pdfft?md5=768991f70c40bd283f96e3c4b9cba196&pid=1-s2.0-S0022123624003616-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123624003616\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624003616","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
让 Ω⊂Rn+1 是一个开放集,其边界可能由不同维度的片段组成。假设Ω 满足定量开放性和连通性,且存在Ω 上的倍增度量 m 和∂Ω 上的倍增度量 μ,并有适当的大小条件。让 Lu=-div(A∇u) 是 Ω 中的实(不一定对称)退化椭圆算子。我们建立以下性质之间的等价关系:(i) ωL∈A∞(μ);(ii) L 的 Dirichlet 问题在某个 p∈(1,∞)的 Lp(μ)中是可解的;(iii) L 的每个有界空解都满足关于 μ 的 Carleson 度量估计、(v) L 的 Dirichlet 问题在 BMO(μ) 中是可解的。另一方面,我们得到了前述等价性的定性类比。事实上,我们用 L 的任何有界空解的截锥平方函数的局部 L2(μ) 估计值来描述 ωL 关于 μ 的绝对连续性,这也等价于 L 的任何有界空解的截锥平方函数的有限性 μ-almost everywhere。
Absolute continuity of degenerate elliptic measure
Let be an open set whose boundary may be composed of pieces of different dimensions. Assume that Ω satisfies the quantitative openness and connectedness, and there exist doubling measures m on Ω and μ on ∂Ω with appropriate size conditions. Let be a real (not necessarily symmetric) degenerate elliptic operator in Ω. Write for the associated degenerate elliptic measure. We establish the equivalence between the following properties: (i) , (ii) the Dirichlet problem for L is solvable in for some , (iii) every bounded null solution of L satisfies Carleson measure estimates with respect to μ, (iv) the conical square function is controlled by the non-tangential maximal function in for all for any null solution of L, and (v) the Dirichlet problem for L is solvable in . On the other hand, we obtain a qualitative analogy of the previous equivalence. Indeed, we characterize the absolute continuity of with respect to μ in terms of local estimates of the truncated conical square function for any bounded null solution of L. This is also equivalent to the finiteness μ-almost everywhere of the truncated conical square function for any bounded null solution of L.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis