沸石工程与固定床塔设计的协同整合,促进沼气提质:吸附剂合成、CO2/CH4 分离动力学和再生评估

IF 8.1 1区 工程技术 Q1 ENGINEERING, CHEMICAL
{"title":"沸石工程与固定床塔设计的协同整合,促进沼气提质:吸附剂合成、CO2/CH4 分离动力学和再生评估","authors":"","doi":"10.1016/j.seppur.2024.129772","DOIUrl":null,"url":null,"abstract":"<div><div>Biogas, a renewable energy vector derived from anaerobic digestion of organic waste, requires CO<sub>2</sub> separation to enhance its calorific value for engine fuel. This study integrates CO<sub>2</sub>/CH<sub>4</sub> separation in biogas using a novel approach integrating dual chemically-activated zeolites and fixed-bed column purification. Biogas produced via CSTR/ultrafiltration (69 % CH<sub>4</sub>, 30 % CO<sub>2</sub>, 14 ppm H<sub>2</sub>S) was further upgraded using HCl + NaOH and H<sub>2</sub>SO<sub>4</sub> + NaOH activated zeolites. Optimal absorption capacity of 97.77 ± 0.01 % was achieved at 140 mesh, 60-minute H<sub>2</sub>SO<sub>4</sub> + NaOH activation, 2-hour calcination (400 °C), and 200 mL/min flow rate. Breakthrough was observed at 18.12 min. Langmuir isotherm (R<sup>2</sup> = 0.9992) and Elovich kinetics (R<sup>2</sup> = 0.9846) best described the adsorption process. XRD analysis showed significant crystal size reduction post-activation (53.31 nm to 16.90 nm). Notably, BET analysis revealed enhanced surface properties surface area of 286.71 m<sup>2</sup>/g, pore volume of 0.213 cc/g, and pore diameter of 3.532 Å. An innovative dual-column system with non-isothermal TSA protocol optimized CO<sub>2</sub> adsorption (30 mins) and desorption (17 mins, 40 °C, 100 mL/min), yielding superior near-pure methane biogas (99.29 % CH<sub>4</sub>, 0.66 % CO<sub>2</sub>, trace H<sub>2</sub>S). A methane loss of 2.75 % during upgrading demonstrated high CO<sub>2</sub> selectivity. This synergistic approach presents a promising solution for sustainable biogas purification and engine fuel applications.</div></div>","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic integration of zeolite engineering and fixed-bed column design for enhanced biogas upgrading: Adsorbent synthesis, CO2/CH4 separation kinetics, and regeneration assessment\",\"authors\":\"\",\"doi\":\"10.1016/j.seppur.2024.129772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Biogas, a renewable energy vector derived from anaerobic digestion of organic waste, requires CO<sub>2</sub> separation to enhance its calorific value for engine fuel. This study integrates CO<sub>2</sub>/CH<sub>4</sub> separation in biogas using a novel approach integrating dual chemically-activated zeolites and fixed-bed column purification. Biogas produced via CSTR/ultrafiltration (69 % CH<sub>4</sub>, 30 % CO<sub>2</sub>, 14 ppm H<sub>2</sub>S) was further upgraded using HCl + NaOH and H<sub>2</sub>SO<sub>4</sub> + NaOH activated zeolites. Optimal absorption capacity of 97.77 ± 0.01 % was achieved at 140 mesh, 60-minute H<sub>2</sub>SO<sub>4</sub> + NaOH activation, 2-hour calcination (400 °C), and 200 mL/min flow rate. Breakthrough was observed at 18.12 min. Langmuir isotherm (R<sup>2</sup> = 0.9992) and Elovich kinetics (R<sup>2</sup> = 0.9846) best described the adsorption process. XRD analysis showed significant crystal size reduction post-activation (53.31 nm to 16.90 nm). Notably, BET analysis revealed enhanced surface properties surface area of 286.71 m<sup>2</sup>/g, pore volume of 0.213 cc/g, and pore diameter of 3.532 Å. An innovative dual-column system with non-isothermal TSA protocol optimized CO<sub>2</sub> adsorption (30 mins) and desorption (17 mins, 40 °C, 100 mL/min), yielding superior near-pure methane biogas (99.29 % CH<sub>4</sub>, 0.66 % CO<sub>2</sub>, trace H<sub>2</sub>S). A methane loss of 2.75 % during upgrading demonstrated high CO<sub>2</sub> selectivity. This synergistic approach presents a promising solution for sustainable biogas purification and engine fuel applications.</div></div>\",\"PeriodicalId\":427,\"journal\":{\"name\":\"Separation and Purification Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Separation and Purification Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1383586624035111\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation and Purification Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1383586624035111","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

沼气是一种从有机废物厌氧消化中提取的可再生能源,需要进行二氧化碳分离以提高其作为发动机燃料的热值。本研究采用一种新型方法,将双重化学活化沸石和固定床柱净化结合起来,对沼气中的 CO2/CH4 进行分离。通过 CSTR/超滤产生的沼气(69 % CH4、30 % CO2、14 ppm H2S)使用 HCl + NaOH 和 H2SO4 + NaOH 活性沸石进行进一步提纯。在 140 目、60 分钟 H2SO4 + NaOH 活化、2 小时煅烧(400 °C)和 200 mL/min 流速条件下,达到了 97.77 ± 0.01 % 的最佳吸收能力。在 18.12 分钟时观察到突破。朗缪尔等温线(R2 = 0.9992)和埃洛维奇动力学(R2 = 0.9846)对吸附过程进行了最佳描述。XRD 分析表明,活化后晶体尺寸明显缩小(从 53.31 nm 减小到 16.90 nm)。创新的双柱系统与非等温 TSA 协议优化了二氧化碳吸附(30 分钟)和解吸(17 分钟,40 °C,100 mL/分钟),产生了优质的近纯甲烷生物气(99.29 % CH4、0.66 % CO2、痕量 H2S)。在提纯过程中,甲烷损失为 2.75%,这表明二氧化碳具有很高的选择性。这种协同方法为可持续的沼气净化和发动机燃料应用提供了一种前景广阔的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Synergistic integration of zeolite engineering and fixed-bed column design for enhanced biogas upgrading: Adsorbent synthesis, CO2/CH4 separation kinetics, and regeneration assessment

Synergistic integration of zeolite engineering and fixed-bed column design for enhanced biogas upgrading: Adsorbent synthesis, CO2/CH4 separation kinetics, and regeneration assessment
Biogas, a renewable energy vector derived from anaerobic digestion of organic waste, requires CO2 separation to enhance its calorific value for engine fuel. This study integrates CO2/CH4 separation in biogas using a novel approach integrating dual chemically-activated zeolites and fixed-bed column purification. Biogas produced via CSTR/ultrafiltration (69 % CH4, 30 % CO2, 14 ppm H2S) was further upgraded using HCl + NaOH and H2SO4 + NaOH activated zeolites. Optimal absorption capacity of 97.77 ± 0.01 % was achieved at 140 mesh, 60-minute H2SO4 + NaOH activation, 2-hour calcination (400 °C), and 200 mL/min flow rate. Breakthrough was observed at 18.12 min. Langmuir isotherm (R2 = 0.9992) and Elovich kinetics (R2 = 0.9846) best described the adsorption process. XRD analysis showed significant crystal size reduction post-activation (53.31 nm to 16.90 nm). Notably, BET analysis revealed enhanced surface properties surface area of 286.71 m2/g, pore volume of 0.213 cc/g, and pore diameter of 3.532 Å. An innovative dual-column system with non-isothermal TSA protocol optimized CO2 adsorption (30 mins) and desorption (17 mins, 40 °C, 100 mL/min), yielding superior near-pure methane biogas (99.29 % CH4, 0.66 % CO2, trace H2S). A methane loss of 2.75 % during upgrading demonstrated high CO2 selectivity. This synergistic approach presents a promising solution for sustainable biogas purification and engine fuel applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Separation and Purification Technology
Separation and Purification Technology 工程技术-工程:化工
CiteScore
14.00
自引率
12.80%
发文量
2347
审稿时长
43 days
期刊介绍: Separation and Purification Technology is a premier journal committed to sharing innovative methods for separation and purification in chemical and environmental engineering, encompassing both homogeneous solutions and heterogeneous mixtures. Our scope includes the separation and/or purification of liquids, vapors, and gases, as well as carbon capture and separation techniques. However, it's important to note that methods solely intended for analytical purposes are not within the scope of the journal. Additionally, disciplines such as soil science, polymer science, and metallurgy fall outside the purview of Separation and Purification Technology. Join us in advancing the field of separation and purification methods for sustainable solutions in chemical and environmental engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信