Abel W. Ourgessa , Jozef Kraxner , Hamada Elsayed , Dušan Galusek , Enrico Bernardo
{"title":"利用碱活性废玻璃纤维和废耐火材料制成可持续建筑材料","authors":"Abel W. Ourgessa , Jozef Kraxner , Hamada Elsayed , Dušan Galusek , Enrico Bernardo","doi":"10.1016/j.oceram.2024.100678","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, waste fiberglass was up-cycled, alone, or mixed with used alumina-zirconia-silica (AZS) refractory from dismantled glass melting furnaces. Alkali activation was performed by suspending fiberglass and fiberglass/AZS powders in NaOH aqueous solution of various concentrations (8M, 6M, and 3M). The activation of waste fiberglass with 8M NaOH yields a gel with calcium and sodium-containing aluminosilicate hydrates. The addition of AZS refractory enabled the release of aluminates into the solution, which had beneficial effects on the mechanical properties. Low molarity activation yielded weaker materials which could be used as precursors for firing at moderate temperatures (800 °C and 1000 °C) to create cellular glass-ceramics, with a total porosity of up to 92 %. The firing of 8M activated samples resulted in glass ceramics with a 66–75 % porosity range and compressive strength of 10–23Mpa. The compressive strength-to-density ratio before and after firing was comparable to that of established commercial construction materials.</div></div>","PeriodicalId":34140,"journal":{"name":"Open Ceramics","volume":"20 ","pages":"Article 100678"},"PeriodicalIF":2.9000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666539524001421/pdfft?md5=783a37ab9bb7d678dcb2dc28be7e36df&pid=1-s2.0-S2666539524001421-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Sustainable construction materials from alkali-activated waste fiberglass and waste refractory\",\"authors\":\"Abel W. Ourgessa , Jozef Kraxner , Hamada Elsayed , Dušan Galusek , Enrico Bernardo\",\"doi\":\"10.1016/j.oceram.2024.100678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, waste fiberglass was up-cycled, alone, or mixed with used alumina-zirconia-silica (AZS) refractory from dismantled glass melting furnaces. Alkali activation was performed by suspending fiberglass and fiberglass/AZS powders in NaOH aqueous solution of various concentrations (8M, 6M, and 3M). The activation of waste fiberglass with 8M NaOH yields a gel with calcium and sodium-containing aluminosilicate hydrates. The addition of AZS refractory enabled the release of aluminates into the solution, which had beneficial effects on the mechanical properties. Low molarity activation yielded weaker materials which could be used as precursors for firing at moderate temperatures (800 °C and 1000 °C) to create cellular glass-ceramics, with a total porosity of up to 92 %. The firing of 8M activated samples resulted in glass ceramics with a 66–75 % porosity range and compressive strength of 10–23Mpa. The compressive strength-to-density ratio before and after firing was comparable to that of established commercial construction materials.</div></div>\",\"PeriodicalId\":34140,\"journal\":{\"name\":\"Open Ceramics\",\"volume\":\"20 \",\"pages\":\"Article 100678\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666539524001421/pdfft?md5=783a37ab9bb7d678dcb2dc28be7e36df&pid=1-s2.0-S2666539524001421-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Ceramics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666539524001421\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Ceramics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666539524001421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Sustainable construction materials from alkali-activated waste fiberglass and waste refractory
In this work, waste fiberglass was up-cycled, alone, or mixed with used alumina-zirconia-silica (AZS) refractory from dismantled glass melting furnaces. Alkali activation was performed by suspending fiberglass and fiberglass/AZS powders in NaOH aqueous solution of various concentrations (8M, 6M, and 3M). The activation of waste fiberglass with 8M NaOH yields a gel with calcium and sodium-containing aluminosilicate hydrates. The addition of AZS refractory enabled the release of aluminates into the solution, which had beneficial effects on the mechanical properties. Low molarity activation yielded weaker materials which could be used as precursors for firing at moderate temperatures (800 °C and 1000 °C) to create cellular glass-ceramics, with a total porosity of up to 92 %. The firing of 8M activated samples resulted in glass ceramics with a 66–75 % porosity range and compressive strength of 10–23Mpa. The compressive strength-to-density ratio before and after firing was comparable to that of established commercial construction materials.