{"title":"Doob 图的特威里格代数中的二阶伦纳德对","authors":"John Vincent S. Morales","doi":"10.1016/j.jcta.2024.105958","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>Γ</mi><mo>=</mo><mi>Γ</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo>)</mo></math></span> denote the Doob graph formed by the Cartesian product of the <em>n</em>th Cartesian power of the Shrikhande graph and the <em>m</em>th Cartesian power of the complete graph on four vertices. Let <span><math><mi>T</mi><mo>=</mo><mi>T</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> denote the Terwilliger algebra of Γ with respect to a fixed vertex <em>x</em> of Γ and let <em>W</em> denote an arbitrary non-thin irreducible <em>T</em>-module in the standard module of Γ. In (Morales and Palma, 2021 <span><span>[25]</span></span>), it was shown that there exists a Lie algebra embedding <em>π</em> from the special orthogonal algebra <span><math><msub><mrow><mi>so</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> into <em>T</em> and that <em>W</em> is an irreducible <span><math><mi>π</mi><mo>(</mo><msub><mrow><mi>so</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>)</mo></math></span>-module. In this paper, we consider two Cartan subalgebras <span><math><mi>h</mi><mo>,</mo><mover><mrow><mi>h</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> of <span><math><msub><mrow><mi>so</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> such that <span><math><mi>h</mi><mo>,</mo><mover><mrow><mi>h</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> generate <span><math><msub><mrow><mi>so</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>. Using the embedding <span><math><mi>π</mi><mo>:</mo><msub><mrow><mi>so</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>→</mo><mi>T</mi></math></span>, we show that <span><math><mi>π</mi><mo>(</mo><mi>h</mi><mo>)</mo></math></span> and <span><math><mi>π</mi><mo>(</mo><mover><mrow><mi>h</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>)</mo></math></span> act on <em>W</em> as a rank two Leonard pair. We also obtain several direct sum decompositions of <em>W</em> akin to how split decompositions are obtained from Leonard pairs of rank one.</div></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A rank two Leonard pair in Terwilliger algebras of Doob graphs\",\"authors\":\"John Vincent S. Morales\",\"doi\":\"10.1016/j.jcta.2024.105958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mi>Γ</mi><mo>=</mo><mi>Γ</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo>)</mo></math></span> denote the Doob graph formed by the Cartesian product of the <em>n</em>th Cartesian power of the Shrikhande graph and the <em>m</em>th Cartesian power of the complete graph on four vertices. Let <span><math><mi>T</mi><mo>=</mo><mi>T</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> denote the Terwilliger algebra of Γ with respect to a fixed vertex <em>x</em> of Γ and let <em>W</em> denote an arbitrary non-thin irreducible <em>T</em>-module in the standard module of Γ. In (Morales and Palma, 2021 <span><span>[25]</span></span>), it was shown that there exists a Lie algebra embedding <em>π</em> from the special orthogonal algebra <span><math><msub><mrow><mi>so</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> into <em>T</em> and that <em>W</em> is an irreducible <span><math><mi>π</mi><mo>(</mo><msub><mrow><mi>so</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>)</mo></math></span>-module. In this paper, we consider two Cartan subalgebras <span><math><mi>h</mi><mo>,</mo><mover><mrow><mi>h</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> of <span><math><msub><mrow><mi>so</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> such that <span><math><mi>h</mi><mo>,</mo><mover><mrow><mi>h</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> generate <span><math><msub><mrow><mi>so</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>. Using the embedding <span><math><mi>π</mi><mo>:</mo><msub><mrow><mi>so</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>→</mo><mi>T</mi></math></span>, we show that <span><math><mi>π</mi><mo>(</mo><mi>h</mi><mo>)</mo></math></span> and <span><math><mi>π</mi><mo>(</mo><mover><mrow><mi>h</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>)</mo></math></span> act on <em>W</em> as a rank two Leonard pair. We also obtain several direct sum decompositions of <em>W</em> akin to how split decompositions are obtained from Leonard pairs of rank one.</div></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097316524000979\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316524000979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
让Γ=Γ(n,m) 表示由四个顶点上的 Shrikhande 图的第 n 个笛卡尔幂和完整图的第 m 个笛卡尔幂的笛卡尔乘积形成的 Doob 图。让 T=T(x) 表示关于 Γ 的固定顶点 x 的 Γ 的特尔维利格代数,让 W 表示 Γ 的标准模块中的任意非薄不可还原 T 模块。莫拉莱斯和帕尔马,2021 [25])中证明,存在一个从特殊正交代数 so4 到 T 的列代数嵌入 π,并且 W 是一个不可还原的 π(so4)- 模块。在本文中,我们考虑 so4 的两个 Cartan 子代数 h,h˜,使得 h,h˜ 产生 so4。利用嵌入π:so4→T,我们证明π(h)和π(h˜)作为秩二伦纳德对作用于 W。我们还得到了 W 的几个直接和分解,类似于从一阶伦纳德对得到分裂分解的方法。
A rank two Leonard pair in Terwilliger algebras of Doob graphs
Let denote the Doob graph formed by the Cartesian product of the nth Cartesian power of the Shrikhande graph and the mth Cartesian power of the complete graph on four vertices. Let denote the Terwilliger algebra of Γ with respect to a fixed vertex x of Γ and let W denote an arbitrary non-thin irreducible T-module in the standard module of Γ. In (Morales and Palma, 2021 [25]), it was shown that there exists a Lie algebra embedding π from the special orthogonal algebra into T and that W is an irreducible -module. In this paper, we consider two Cartan subalgebras of such that generate . Using the embedding , we show that and act on W as a rank two Leonard pair. We also obtain several direct sum decompositions of W akin to how split decompositions are obtained from Leonard pairs of rank one.