具有去边扰动的布尔控制网络的鲁棒集稳定性

IF 3.4 2区 数学 Q1 MATHEMATICS, APPLIED
Yuexin Liu , Anna Feng , Jiahao Wu , Jie Zhong , Bowen Li
{"title":"具有去边扰动的布尔控制网络的鲁棒集稳定性","authors":"Yuexin Liu ,&nbsp;Anna Feng ,&nbsp;Jiahao Wu ,&nbsp;Jie Zhong ,&nbsp;Bowen Li","doi":"10.1016/j.cnsns.2024.108355","DOIUrl":null,"url":null,"abstract":"<div><div>This paper examines robust set stabilization in Boolean control networks (BCNs) under a new edge removal perturbations framework. Edge removal perturbations are characterized by the random elimination of certain edges, thereby disrupting the interactive dynamics between nodes. To counteract these perturbations, an edge addition control strategy is proposed to achieve set stabilization in BCNs. This strategy involves selectively adding edges to restore and enhance the connections between nodes. Then, one necessary and sufficient condition is given in this paper, complemented by a practical criterion for verification. Additionally, the design of state feedback controllers that facilitate robust set stabilization under the proposed edge addition control is outlined. To demonstrate the efficacy of this approach proposed in this paper, a biological example is presented, validating the obtained main results.</div></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1007570424005409/pdfft?md5=7690db88a0bda1e84a0c214dd0b7454b&pid=1-s2.0-S1007570424005409-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Robust set stabilization of Boolean control networks with edge removal perturbations\",\"authors\":\"Yuexin Liu ,&nbsp;Anna Feng ,&nbsp;Jiahao Wu ,&nbsp;Jie Zhong ,&nbsp;Bowen Li\",\"doi\":\"10.1016/j.cnsns.2024.108355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper examines robust set stabilization in Boolean control networks (BCNs) under a new edge removal perturbations framework. Edge removal perturbations are characterized by the random elimination of certain edges, thereby disrupting the interactive dynamics between nodes. To counteract these perturbations, an edge addition control strategy is proposed to achieve set stabilization in BCNs. This strategy involves selectively adding edges to restore and enhance the connections between nodes. Then, one necessary and sufficient condition is given in this paper, complemented by a practical criterion for verification. Additionally, the design of state feedback controllers that facilitate robust set stabilization under the proposed edge addition control is outlined. To demonstrate the efficacy of this approach proposed in this paper, a biological example is presented, validating the obtained main results.</div></div>\",\"PeriodicalId\":50658,\"journal\":{\"name\":\"Communications in Nonlinear Science and Numerical Simulation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1007570424005409/pdfft?md5=7690db88a0bda1e84a0c214dd0b7454b&pid=1-s2.0-S1007570424005409-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Nonlinear Science and Numerical Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1007570424005409\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570424005409","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了布尔控制网络(BCN)在新的边缘去除扰动框架下的稳健集稳定问题。去边扰动的特点是随机消除某些边,从而破坏节点之间的交互动态。为了抵消这些扰动,我们提出了一种边缘添加控制策略,以实现 BCN 的集合稳定。该策略包括有选择地添加边,以恢复和增强节点之间的连接。然后,本文给出了一个必要条件和充分条件,并补充了一个实用的验证标准。此外,本文还概述了如何设计状态反馈控制器,以便在拟议的边缘添加控制下实现稳健的集合稳定。为了证明本文所提方法的有效性,本文列举了一个生物实例,以验证所获得的主要结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust set stabilization of Boolean control networks with edge removal perturbations
This paper examines robust set stabilization in Boolean control networks (BCNs) under a new edge removal perturbations framework. Edge removal perturbations are characterized by the random elimination of certain edges, thereby disrupting the interactive dynamics between nodes. To counteract these perturbations, an edge addition control strategy is proposed to achieve set stabilization in BCNs. This strategy involves selectively adding edges to restore and enhance the connections between nodes. Then, one necessary and sufficient condition is given in this paper, complemented by a practical criterion for verification. Additionally, the design of state feedback controllers that facilitate robust set stabilization under the proposed edge addition control is outlined. To demonstrate the efficacy of this approach proposed in this paper, a biological example is presented, validating the obtained main results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Nonlinear Science and Numerical Simulation
Communications in Nonlinear Science and Numerical Simulation MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
6.80
自引率
7.70%
发文量
378
审稿时长
78 days
期刊介绍: The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity. The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged. Topics of interest: Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity. No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信