{"title":"非线性耦合时分数薛定谔方程线性化变换 L1 虚拟元素法的无条件误差分析","authors":"Yanping Chen , Jixiao Guo","doi":"10.1016/j.cam.2024.116283","DOIUrl":null,"url":null,"abstract":"<div><div>This paper constructs a linearized transformed <span><math><mrow><mi>L</mi><mn>1</mn></mrow></math></span> virtual element method for the generalized nonlinear coupled time-fractional Schrödinger equations. The solutions to such problems typically exhibit singular behavior at the beginning. To avoid this pitfall, we introduce an identical <span><math><mi>s</mi></math></span>-fractional differential system derived from a smoothing transformation of variables <span><math><mrow><mi>t</mi><mo>=</mo><msup><mrow><mi>s</mi></mrow><mrow><mn>1</mn><mo>/</mo><mi>α</mi></mrow></msup></mrow></math></span>, <span><math><mrow><mn>0</mn><mo><</mo><mi>α</mi><mo><</mo><mn>1</mn></mrow></math></span>. By utilizing the discrete complementary convolution kernels, we prove the boundedness and error estimates of the solution of time-discrete system. Moreover, the unconditionally optimal error bounds of the proposed fully discrete scheme are derived in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norm without restriction on the grid ratio. Finally, numerical tests on a set of polygonal meshes are presented to verify the theoretical results.</div></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unconditional error analysis of the linearized transformed L1 virtual element method for nonlinear coupled time-fractional Schrödinger equations\",\"authors\":\"Yanping Chen , Jixiao Guo\",\"doi\":\"10.1016/j.cam.2024.116283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper constructs a linearized transformed <span><math><mrow><mi>L</mi><mn>1</mn></mrow></math></span> virtual element method for the generalized nonlinear coupled time-fractional Schrödinger equations. The solutions to such problems typically exhibit singular behavior at the beginning. To avoid this pitfall, we introduce an identical <span><math><mi>s</mi></math></span>-fractional differential system derived from a smoothing transformation of variables <span><math><mrow><mi>t</mi><mo>=</mo><msup><mrow><mi>s</mi></mrow><mrow><mn>1</mn><mo>/</mo><mi>α</mi></mrow></msup></mrow></math></span>, <span><math><mrow><mn>0</mn><mo><</mo><mi>α</mi><mo><</mo><mn>1</mn></mrow></math></span>. By utilizing the discrete complementary convolution kernels, we prove the boundedness and error estimates of the solution of time-discrete system. Moreover, the unconditionally optimal error bounds of the proposed fully discrete scheme are derived in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norm without restriction on the grid ratio. Finally, numerical tests on a set of polygonal meshes are presented to verify the theoretical results.</div></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377042724005272\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724005272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
本文为广义非线性耦合时间分数薛定谔方程构建了线性化变换 L1 虚拟元素方法。此类问题的解通常在开始时表现出奇异行为。为了避免这一缺陷,我们引入了一个由变量 t=s1/α, 0<α<1 的平滑变换导出的相同 s 分式微分方程系统。此外,我们还在不限制网格比的情况下,以 L2 规范推导出了所提出的完全离散方案的无条件最优误差边界。最后,对一组多边形网格进行了数值测试,以验证理论结果。
Unconditional error analysis of the linearized transformed L1 virtual element method for nonlinear coupled time-fractional Schrödinger equations
This paper constructs a linearized transformed virtual element method for the generalized nonlinear coupled time-fractional Schrödinger equations. The solutions to such problems typically exhibit singular behavior at the beginning. To avoid this pitfall, we introduce an identical -fractional differential system derived from a smoothing transformation of variables , . By utilizing the discrete complementary convolution kernels, we prove the boundedness and error estimates of the solution of time-discrete system. Moreover, the unconditionally optimal error bounds of the proposed fully discrete scheme are derived in -norm without restriction on the grid ratio. Finally, numerical tests on a set of polygonal meshes are presented to verify the theoretical results.