用于求解艾伦-卡恩方程的显式不变能量四分法(EIEQ)数值方案的误差分析

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Jun Zhang , Fangying Song , Xiaofeng Yang , Yu Zhang
{"title":"用于求解艾伦-卡恩方程的显式不变能量四分法(EIEQ)数值方案的误差分析","authors":"Jun Zhang ,&nbsp;Fangying Song ,&nbsp;Xiaofeng Yang ,&nbsp;Yu Zhang","doi":"10.1016/j.cam.2024.116224","DOIUrl":null,"url":null,"abstract":"<div><div>This paper focuses on the error analysis of a first-order, time-discrete scheme for solving the nonlinear Allen–Cahn equation. The discretization of the nonlinear potential is achieved through the EIEQ method, which employs an auxiliary variable to linearize the nonlinear double-well potential effectively. The energy stability of the scheme is demonstrated, along with its decoupled type implementation. Under a set of reasonable assumptions related to boundedness and continuity, an extensive error analysis is performed. This analysis results in the establishment of <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> error bounds for the numerical solution. Furthermore, a variety of numerical examples are conducted to illustrate the accuracy of the EIEQ scheme, highlighting its effectiveness in addressing complex dynamical systems governed by the Allen–Cahn equation.</div></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Error analysis of the explicit-invariant energy quadratization (EIEQ) numerical scheme for solving the Allen–Cahn equation\",\"authors\":\"Jun Zhang ,&nbsp;Fangying Song ,&nbsp;Xiaofeng Yang ,&nbsp;Yu Zhang\",\"doi\":\"10.1016/j.cam.2024.116224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper focuses on the error analysis of a first-order, time-discrete scheme for solving the nonlinear Allen–Cahn equation. The discretization of the nonlinear potential is achieved through the EIEQ method, which employs an auxiliary variable to linearize the nonlinear double-well potential effectively. The energy stability of the scheme is demonstrated, along with its decoupled type implementation. Under a set of reasonable assumptions related to boundedness and continuity, an extensive error analysis is performed. This analysis results in the establishment of <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> error bounds for the numerical solution. Furthermore, a variety of numerical examples are conducted to illustrate the accuracy of the EIEQ scheme, highlighting its effectiveness in addressing complex dynamical systems governed by the Allen–Cahn equation.</div></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377042724004734\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724004734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文重点分析了求解非线性 Allen-Cahn 方程的一阶时间离散方案的误差。非线性势的离散化是通过 EIEQ 方法实现的,该方法采用了一个辅助变量来有效地线性化非线性双阱势。演示了该方案的能量稳定性及其解耦类型的实现。在一系列与有界性和连续性相关的合理假设下,进行了广泛的误差分析。通过分析,建立了数值解的 L2 和 H1 误差边界。此外,还通过各种数值示例说明了 EIEQ 方案的准确性,突出了它在处理受 Allen-Cahn 方程控制的复杂动力系统时的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Error analysis of the explicit-invariant energy quadratization (EIEQ) numerical scheme for solving the Allen–Cahn equation
This paper focuses on the error analysis of a first-order, time-discrete scheme for solving the nonlinear Allen–Cahn equation. The discretization of the nonlinear potential is achieved through the EIEQ method, which employs an auxiliary variable to linearize the nonlinear double-well potential effectively. The energy stability of the scheme is demonstrated, along with its decoupled type implementation. Under a set of reasonable assumptions related to boundedness and continuity, an extensive error analysis is performed. This analysis results in the establishment of L2 and H1 error bounds for the numerical solution. Furthermore, a variety of numerical examples are conducted to illustrate the accuracy of the EIEQ scheme, highlighting its effectiveness in addressing complex dynamical systems governed by the Allen–Cahn equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信