带电势的一维薛定谔方程的定量可观测性

IF 1.7 2区 数学 Q1 MATHEMATICS
Pei Su , Chenmin Sun , Xu Yuan
{"title":"带电势的一维薛定谔方程的定量可观测性","authors":"Pei Su ,&nbsp;Chenmin Sun ,&nbsp;Xu Yuan","doi":"10.1016/j.jfa.2024.110695","DOIUrl":null,"url":null,"abstract":"<div><div>In this note, we prove the quantitative observability with an explicit control cost for the 1D Schrödinger equation over <span><math><mi>R</mi></math></span> with real-valued, bounded continuous potential on thick sets. Our proof relies on different techniques for low-frequency and high-frequency estimates. In particular, we extend the large time observability result for the 1D free Schrödinger equation in Theorem 1.1 of Huang-Wang-Wang <span><span>[20]</span></span> to any short time. As another byproduct, we extend the spectral inequality of Lebeau-Moyano <span><span>[27]</span></span> for real-analytic potentials to bounded continuous potentials in the one-dimensional case.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitative observability for one-dimensional Schrödinger equations with potentials\",\"authors\":\"Pei Su ,&nbsp;Chenmin Sun ,&nbsp;Xu Yuan\",\"doi\":\"10.1016/j.jfa.2024.110695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this note, we prove the quantitative observability with an explicit control cost for the 1D Schrödinger equation over <span><math><mi>R</mi></math></span> with real-valued, bounded continuous potential on thick sets. Our proof relies on different techniques for low-frequency and high-frequency estimates. In particular, we extend the large time observability result for the 1D free Schrödinger equation in Theorem 1.1 of Huang-Wang-Wang <span><span>[20]</span></span> to any short time. As another byproduct, we extend the spectral inequality of Lebeau-Moyano <span><span>[27]</span></span> for real-analytic potentials to bounded continuous potentials in the one-dimensional case.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123624003835\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624003835","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本论文中,我们证明了 R 上的一维薛定谔方程的定量可观测性,该方程在厚集上具有实值、有界的连续势。我们的证明依赖于不同的低频和高频估计技术。特别是,我们将 Huang-Wang-Wang [20] 的定理 1.1 中的一维自由薛定谔方程的大时间可观测性结果扩展到任何短时间。作为另一个副产品,我们将 Lebeau-Moyano [27] 针对实解析势的谱不等式扩展到一维情况下的有界连续势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantitative observability for one-dimensional Schrödinger equations with potentials
In this note, we prove the quantitative observability with an explicit control cost for the 1D Schrödinger equation over R with real-valued, bounded continuous potential on thick sets. Our proof relies on different techniques for low-frequency and high-frequency estimates. In particular, we extend the large time observability result for the 1D free Schrödinger equation in Theorem 1.1 of Huang-Wang-Wang [20] to any short time. As another byproduct, we extend the spectral inequality of Lebeau-Moyano [27] for real-analytic potentials to bounded continuous potentials in the one-dimensional case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信