估计光流:最新技术综述

IF 4.3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Andrea Alfarano , Luca Maiano , Lorenzo Papa , Irene Amerini
{"title":"估计光流:最新技术综述","authors":"Andrea Alfarano ,&nbsp;Luca Maiano ,&nbsp;Lorenzo Papa ,&nbsp;Irene Amerini","doi":"10.1016/j.cviu.2024.104160","DOIUrl":null,"url":null,"abstract":"<div><div>Optical flow estimation is a crucial task in computer vision that provides low-level motion information. Despite recent advances, real-world applications still present significant challenges. This survey provides an overview of optical flow techniques and their application. For a comprehensive review, this survey covers both classical frameworks and the latest AI-based techniques. In doing so, we highlight the limitations of current benchmarks and metrics, underscoring the need for more representative datasets and comprehensive evaluation methods. The survey also highlights the importance of integrating industry knowledge and adopting training practices optimized for deep learning-based models. By addressing these issues, future research can aid the development of robust and efficient optical flow methods that can effectively address real-world scenarios.</div></div>","PeriodicalId":50633,"journal":{"name":"Computer Vision and Image Understanding","volume":"249 ","pages":"Article 104160"},"PeriodicalIF":4.3000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1077314224002418/pdfft?md5=0e040acf6e4116194d80885aeb4b2b49&pid=1-s2.0-S1077314224002418-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Estimating optical flow: A comprehensive review of the state of the art\",\"authors\":\"Andrea Alfarano ,&nbsp;Luca Maiano ,&nbsp;Lorenzo Papa ,&nbsp;Irene Amerini\",\"doi\":\"10.1016/j.cviu.2024.104160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Optical flow estimation is a crucial task in computer vision that provides low-level motion information. Despite recent advances, real-world applications still present significant challenges. This survey provides an overview of optical flow techniques and their application. For a comprehensive review, this survey covers both classical frameworks and the latest AI-based techniques. In doing so, we highlight the limitations of current benchmarks and metrics, underscoring the need for more representative datasets and comprehensive evaluation methods. The survey also highlights the importance of integrating industry knowledge and adopting training practices optimized for deep learning-based models. By addressing these issues, future research can aid the development of robust and efficient optical flow methods that can effectively address real-world scenarios.</div></div>\",\"PeriodicalId\":50633,\"journal\":{\"name\":\"Computer Vision and Image Understanding\",\"volume\":\"249 \",\"pages\":\"Article 104160\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1077314224002418/pdfft?md5=0e040acf6e4116194d80885aeb4b2b49&pid=1-s2.0-S1077314224002418-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Vision and Image Understanding\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1077314224002418\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Vision and Image Understanding","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077314224002418","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

光流估计是计算机视觉中的一项重要任务,它能提供低层次的运动信息。尽管最近取得了一些进展,但现实世界的应用仍然面临着巨大的挑战。本研究概述了光流技术及其应用。为了全面回顾,本调查涵盖了经典框架和基于人工智能的最新技术。在此过程中,我们强调了当前基准和衡量标准的局限性,强调需要更具代表性的数据集和全面的评估方法。调查还强调了整合行业知识和采用针对基于深度学习的模型进行优化的培训实践的重要性。通过解决这些问题,未来的研究将有助于开发稳健高效的光流方法,从而有效应对现实世界的各种场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating optical flow: A comprehensive review of the state of the art
Optical flow estimation is a crucial task in computer vision that provides low-level motion information. Despite recent advances, real-world applications still present significant challenges. This survey provides an overview of optical flow techniques and their application. For a comprehensive review, this survey covers both classical frameworks and the latest AI-based techniques. In doing so, we highlight the limitations of current benchmarks and metrics, underscoring the need for more representative datasets and comprehensive evaluation methods. The survey also highlights the importance of integrating industry knowledge and adopting training practices optimized for deep learning-based models. By addressing these issues, future research can aid the development of robust and efficient optical flow methods that can effectively address real-world scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Vision and Image Understanding
Computer Vision and Image Understanding 工程技术-工程:电子与电气
CiteScore
7.80
自引率
4.40%
发文量
112
审稿时长
79 days
期刊介绍: The central focus of this journal is the computer analysis of pictorial information. Computer Vision and Image Understanding publishes papers covering all aspects of image analysis from the low-level, iconic processes of early vision to the high-level, symbolic processes of recognition and interpretation. A wide range of topics in the image understanding area is covered, including papers offering insights that differ from predominant views. Research Areas Include: • Theory • Early vision • Data structures and representations • Shape • Range • Motion • Matching and recognition • Architecture and languages • Vision systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信