R2 中一类椭圆 MEMS 方程的破裂解行为研究

IF 2.4 2区 数学 Q1 MATHEMATICS
Qing Li , Yanyan Zhang
{"title":"R2 中一类椭圆 MEMS 方程的破裂解行为研究","authors":"Qing Li ,&nbsp;Yanyan Zhang","doi":"10.1016/j.jde.2024.09.035","DOIUrl":null,"url":null,"abstract":"<div><div>This study examines nonnegative solutions to the problem<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mi>Δ</mi><mi>u</mi><mo>=</mo><mfrac><mrow><mi>λ</mi><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>α</mi></mrow></msup></mrow><mrow><msup><mrow><mi>u</mi></mrow><mrow><mi>p</mi></mrow></msup></mrow></mfrac><mspace></mspace></mtd><mtd><mtext> in</mtext><mspace></mspace><mspace></mspace><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>∖</mo><mo>{</mo><mn>0</mn><mo>}</mo><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>(</mo><mn>0</mn><mo>)</mo><mo>=</mo><mn>0</mn><mspace></mspace><mtext>and</mtext><mspace></mspace><mi>u</mi><mo>&gt;</mo><mn>0</mn><mspace></mspace></mtd><mtd><mtext> in</mtext><mspace></mspace><mspace></mspace><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>∖</mo><mo>{</mo><mn>0</mn><mo>}</mo><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> where <span><math><mi>λ</mi><mo>&gt;</mo><mn>0</mn></math></span>, <span><math><mi>α</mi><mo>&gt;</mo><mo>−</mo><mn>2</mn></math></span>, and <span><math><mi>p</mi><mo>&gt;</mo><mn>0</mn></math></span> are constants. The possible asymptotic behaviors of <span><math><mi>u</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> at <span><math><mo>|</mo><mi>x</mi><mo>|</mo><mo>=</mo><mn>0</mn></math></span> and <span><math><mo>|</mo><mi>x</mi><mo>|</mo><mo>=</mo><mo>∞</mo></math></span> are classified according to <span><math><mo>(</mo><mi>α</mi><mo>,</mo><mi>p</mi><mo>)</mo></math></span>. In particular, the results show that for some <span><math><mo>(</mo><mi>α</mi><mo>,</mo><mi>p</mi><mo>)</mo></math></span>, <span><math><mi>u</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> exhibits only “isotropic” behavior at <span><math><mo>|</mo><mi>x</mi><mo>|</mo><mo>=</mo><mn>0</mn></math></span> and <span><math><mo>|</mo><mi>x</mi><mo>|</mo><mo>=</mo><mo>∞</mo></math></span>. However, in other cases, <span><math><mi>u</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> may exhibit the “anisotropic” behavior at <span><math><mo>|</mo><mi>x</mi><mo>|</mo><mo>=</mo><mn>0</mn></math></span> or <span><math><mo>|</mo><mi>x</mi><mo>|</mo><mo>=</mo><mo>∞</mo></math></span>. Furthermore, the relation between the limit at <span><math><mo>|</mo><mi>x</mi><mo>|</mo><mo>=</mo><mn>0</mn></math></span> and the limit at <span><math><mo>|</mo><mi>x</mi><mo>|</mo><mo>=</mo><mo>∞</mo></math></span> for a global solution is investigated.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the behaviors of rupture solutions for a class of elliptic MEMS equations in R2\",\"authors\":\"Qing Li ,&nbsp;Yanyan Zhang\",\"doi\":\"10.1016/j.jde.2024.09.035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study examines nonnegative solutions to the problem<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mi>Δ</mi><mi>u</mi><mo>=</mo><mfrac><mrow><mi>λ</mi><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>α</mi></mrow></msup></mrow><mrow><msup><mrow><mi>u</mi></mrow><mrow><mi>p</mi></mrow></msup></mrow></mfrac><mspace></mspace></mtd><mtd><mtext> in</mtext><mspace></mspace><mspace></mspace><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>∖</mo><mo>{</mo><mn>0</mn><mo>}</mo><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>(</mo><mn>0</mn><mo>)</mo><mo>=</mo><mn>0</mn><mspace></mspace><mtext>and</mtext><mspace></mspace><mi>u</mi><mo>&gt;</mo><mn>0</mn><mspace></mspace></mtd><mtd><mtext> in</mtext><mspace></mspace><mspace></mspace><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>∖</mo><mo>{</mo><mn>0</mn><mo>}</mo><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> where <span><math><mi>λ</mi><mo>&gt;</mo><mn>0</mn></math></span>, <span><math><mi>α</mi><mo>&gt;</mo><mo>−</mo><mn>2</mn></math></span>, and <span><math><mi>p</mi><mo>&gt;</mo><mn>0</mn></math></span> are constants. The possible asymptotic behaviors of <span><math><mi>u</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> at <span><math><mo>|</mo><mi>x</mi><mo>|</mo><mo>=</mo><mn>0</mn></math></span> and <span><math><mo>|</mo><mi>x</mi><mo>|</mo><mo>=</mo><mo>∞</mo></math></span> are classified according to <span><math><mo>(</mo><mi>α</mi><mo>,</mo><mi>p</mi><mo>)</mo></math></span>. In particular, the results show that for some <span><math><mo>(</mo><mi>α</mi><mo>,</mo><mi>p</mi><mo>)</mo></math></span>, <span><math><mi>u</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> exhibits only “isotropic” behavior at <span><math><mo>|</mo><mi>x</mi><mo>|</mo><mo>=</mo><mn>0</mn></math></span> and <span><math><mo>|</mo><mi>x</mi><mo>|</mo><mo>=</mo><mo>∞</mo></math></span>. However, in other cases, <span><math><mi>u</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> may exhibit the “anisotropic” behavior at <span><math><mo>|</mo><mi>x</mi><mo>|</mo><mo>=</mo><mn>0</mn></math></span> or <span><math><mo>|</mo><mi>x</mi><mo>|</mo><mo>=</mo><mo>∞</mo></math></span>. Furthermore, the relation between the limit at <span><math><mo>|</mo><mi>x</mi><mo>|</mo><mo>=</mo><mn>0</mn></math></span> and the limit at <span><math><mo>|</mo><mi>x</mi><mo>|</mo><mo>=</mo><mo>∞</mo></math></span> for a global solution is investigated.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039624006211\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624006211","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了问题{Δu=λ|x|αup inR2∖{0},u(0)=0andu>0 inR2∖{0}的非负解,其中λ>0,α>-2,p>0为常数。根据 (α,p) 对 u(x) 在 |x|=0 和 |x|=∞ 时的可能渐近行为进行了分类。结果特别表明,对于某些 (α,p) 情况,u(x) 只在|x|=0 和 |x|=∞时表现出 "各向同性 "行为。然而,在其他情况下,u(x) 可能会在|x|=0 或 |x|=∞处表现出 "各向异性 "行为。此外,还研究了全局解在 |x|=0 时的极限与 |x|=∞ 时的极限之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on the behaviors of rupture solutions for a class of elliptic MEMS equations in R2
This study examines nonnegative solutions to the problem{Δu=λ|x|αup inR2{0},u(0)=0andu>0 inR2{0}, where λ>0, α>2, and p>0 are constants. The possible asymptotic behaviors of u(x) at |x|=0 and |x|= are classified according to (α,p). In particular, the results show that for some (α,p), u(x) exhibits only “isotropic” behavior at |x|=0 and |x|=. However, in other cases, u(x) may exhibit the “anisotropic” behavior at |x|=0 or |x|=. Furthermore, the relation between the limit at |x|=0 and the limit at |x|= for a global solution is investigated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信