非线性狄拉克方程的归一化解

IF 2.4 2区 数学 Q1 MATHEMATICS
{"title":"非线性狄拉克方程的归一化解","authors":"","doi":"10.1016/j.jde.2024.09.029","DOIUrl":null,"url":null,"abstract":"<div><div>We prove the existence of a normalized, stationary solution <span><math><mi>ψ</mi><mo>:</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>→</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span> with frequency <span><math><mi>ω</mi><mo>&gt;</mo><mn>0</mn></math></span> of the nonlinear Dirac equation. The result covers the case in which the nonlinearity is the gradient of a function of the form<span><span><span><math><mi>F</mi><mo>(</mo><mi>Ψ</mi><mo>)</mo><mo>=</mo><mi>a</mi><mo>|</mo><mo>(</mo><mi>Ψ</mi><mo>,</mo><msup><mrow><mi>γ</mi></mrow><mrow><mn>0</mn></mrow></msup><mi>Ψ</mi><mo>)</mo><msup><mrow><mo>|</mo></mrow><mrow><mfrac><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>+</mo><mi>b</mi><mo>|</mo><mo>(</mo><mi>Ψ</mi><mo>,</mo><msup><mrow><mi>γ</mi></mrow><mrow><mn>1</mn></mrow></msup><msup><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>γ</mi></mrow><mrow><mn>3</mn></mrow></msup><mi>Ψ</mi><mo>)</mo><msup><mrow><mo>|</mo></mrow><mrow><mfrac><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></math></span></span></span> with <span><math><mi>α</mi><mo>∈</mo><mo>(</mo><mn>2</mn><mo>,</mo><mfrac><mrow><mn>8</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>]</mo></math></span>, <span><math><mi>b</mi><mo>≥</mo><mn>0</mn></math></span> and <span><math><mi>a</mi><mo>&gt;</mo><mn>0</mn></math></span> sufficiently small. Here <span><math><msup><mrow><mi>γ</mi></mrow><mrow><mi>i</mi></mrow></msup></math></span>, <span><math><mi>i</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo>…</mo><mo>,</mo><mn>3</mn></math></span> are the <span><math><mn>4</mn><mo>×</mo><mn>4</mn></math></span> Dirac's matrices.</div><div>We find the solution as a critical point of a suitable functional restricted to the unit sphere in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, and <em>ω</em> turns out to be the corresponding Lagrange multiplier.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022039624006144/pdfft?md5=cb690464016ef3752322a3f835e48f7c&pid=1-s2.0-S0022039624006144-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Normalized solutions for a nonlinear Dirac equation\",\"authors\":\"\",\"doi\":\"10.1016/j.jde.2024.09.029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We prove the existence of a normalized, stationary solution <span><math><mi>ψ</mi><mo>:</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>→</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span> with frequency <span><math><mi>ω</mi><mo>&gt;</mo><mn>0</mn></math></span> of the nonlinear Dirac equation. The result covers the case in which the nonlinearity is the gradient of a function of the form<span><span><span><math><mi>F</mi><mo>(</mo><mi>Ψ</mi><mo>)</mo><mo>=</mo><mi>a</mi><mo>|</mo><mo>(</mo><mi>Ψ</mi><mo>,</mo><msup><mrow><mi>γ</mi></mrow><mrow><mn>0</mn></mrow></msup><mi>Ψ</mi><mo>)</mo><msup><mrow><mo>|</mo></mrow><mrow><mfrac><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>+</mo><mi>b</mi><mo>|</mo><mo>(</mo><mi>Ψ</mi><mo>,</mo><msup><mrow><mi>γ</mi></mrow><mrow><mn>1</mn></mrow></msup><msup><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>γ</mi></mrow><mrow><mn>3</mn></mrow></msup><mi>Ψ</mi><mo>)</mo><msup><mrow><mo>|</mo></mrow><mrow><mfrac><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></math></span></span></span> with <span><math><mi>α</mi><mo>∈</mo><mo>(</mo><mn>2</mn><mo>,</mo><mfrac><mrow><mn>8</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>]</mo></math></span>, <span><math><mi>b</mi><mo>≥</mo><mn>0</mn></math></span> and <span><math><mi>a</mi><mo>&gt;</mo><mn>0</mn></math></span> sufficiently small. Here <span><math><msup><mrow><mi>γ</mi></mrow><mrow><mi>i</mi></mrow></msup></math></span>, <span><math><mi>i</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo>…</mo><mo>,</mo><mn>3</mn></math></span> are the <span><math><mn>4</mn><mo>×</mo><mn>4</mn></math></span> Dirac's matrices.</div><div>We find the solution as a critical point of a suitable functional restricted to the unit sphere in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, and <em>ω</em> turns out to be the corresponding Lagrange multiplier.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022039624006144/pdfft?md5=cb690464016ef3752322a3f835e48f7c&pid=1-s2.0-S0022039624006144-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039624006144\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624006144","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了非线性狄拉克方程存在一个频率为 ω>0 的归一化静止解 ψ:R3→C4。结果涵盖了这样一种情况:非线性是形式为F(Ψ)=a|(Ψ,γ0Ψ)|α2+b|(Ψ,γ1γ2γ3Ψ)|α2的函数的梯度,α∈(2,83],b≥0且a>0足够小。这里 γi, i=0,..., 3 是 4×4 的狄拉克矩阵。我们发现解是限制在 L2 单位球内的合适函数的临界点,而 ω 就是相应的拉格朗日乘数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Normalized solutions for a nonlinear Dirac equation
We prove the existence of a normalized, stationary solution ψ:R3C4 with frequency ω>0 of the nonlinear Dirac equation. The result covers the case in which the nonlinearity is the gradient of a function of the formF(Ψ)=a|(Ψ,γ0Ψ)|α2+b|(Ψ,γ1γ2γ3Ψ)|α2 with α(2,83], b0 and a>0 sufficiently small. Here γi, i=0,,3 are the 4×4 Dirac's matrices.
We find the solution as a critical point of a suitable functional restricted to the unit sphere in L2, and ω turns out to be the corresponding Lagrange multiplier.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信