论哈林图的包含色度指数

IF 0.7 3区 数学 Q2 MATHEMATICS
Ningge Huang, Yi Tan, Lily Chen
{"title":"论哈林图的包含色度指数","authors":"Ningge Huang,&nbsp;Yi Tan,&nbsp;Lily Chen","doi":"10.1016/j.disc.2024.114266","DOIUrl":null,"url":null,"abstract":"<div><div>An inclusion-free edge-coloring of a graph <em>G</em> with <span><math><mi>δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mn>2</mn></math></span> is a proper edge-coloring such that the set of colors incident with any vertex is not contained in the set of colors incident to any of its neighbors. The minimum number of colors needed in an inclusion-free edge-coloring of <em>G</em> is called the <span><math><mi>i</mi><mi>n</mi><mi>c</mi><mi>l</mi><mi>u</mi><mi>s</mi><mi>i</mi><mi>o</mi><mi>n</mi></math></span>-<span><math><mi>f</mi><mi>r</mi><mi>e</mi><mi>e</mi></math></span> <span><math><mi>c</mi><mi>h</mi><mi>r</mi><mi>o</mi><mi>m</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>c</mi><mspace></mspace><mi>i</mi><mi>n</mi><mi>d</mi><mi>e</mi><mi>x</mi></math></span>, denoted by <span><math><msubsup><mrow><mi>χ</mi></mrow><mrow><mo>⊂</mo></mrow><mrow><mo>′</mo></mrow></msubsup><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. In this paper, we show that for a Halin graph <em>G</em> with maximum degree <span><math><mi>Δ</mi><mo>≥</mo><mn>4</mn></math></span>, if <em>G</em> is isomorphic to a wheel <span><math><msub><mrow><mi>W</mi></mrow><mrow><mi>Δ</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> where Δ is odd, then <span><math><msubsup><mrow><mi>χ</mi></mrow><mrow><mo>⊂</mo></mrow><mrow><mo>′</mo></mrow></msubsup><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>Δ</mi><mo>+</mo><mn>2</mn></math></span>, otherwise <span><math><msubsup><mrow><mi>χ</mi></mrow><mrow><mo>⊂</mo></mrow><mrow><mo>′</mo></mrow></msubsup><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>Δ</mi><mo>+</mo><mn>1</mn></math></span>. We also show a special cubic Halin graph with <span><math><msubsup><mrow><mi>χ</mi></mrow><mrow><mo>⊂</mo></mrow><mrow><mo>′</mo></mrow></msubsup><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mn>5</mn></math></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 2","pages":"Article 114266"},"PeriodicalIF":0.7000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the inclusion chromatic index of a Halin graph\",\"authors\":\"Ningge Huang,&nbsp;Yi Tan,&nbsp;Lily Chen\",\"doi\":\"10.1016/j.disc.2024.114266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>An inclusion-free edge-coloring of a graph <em>G</em> with <span><math><mi>δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mn>2</mn></math></span> is a proper edge-coloring such that the set of colors incident with any vertex is not contained in the set of colors incident to any of its neighbors. The minimum number of colors needed in an inclusion-free edge-coloring of <em>G</em> is called the <span><math><mi>i</mi><mi>n</mi><mi>c</mi><mi>l</mi><mi>u</mi><mi>s</mi><mi>i</mi><mi>o</mi><mi>n</mi></math></span>-<span><math><mi>f</mi><mi>r</mi><mi>e</mi><mi>e</mi></math></span> <span><math><mi>c</mi><mi>h</mi><mi>r</mi><mi>o</mi><mi>m</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>c</mi><mspace></mspace><mi>i</mi><mi>n</mi><mi>d</mi><mi>e</mi><mi>x</mi></math></span>, denoted by <span><math><msubsup><mrow><mi>χ</mi></mrow><mrow><mo>⊂</mo></mrow><mrow><mo>′</mo></mrow></msubsup><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. In this paper, we show that for a Halin graph <em>G</em> with maximum degree <span><math><mi>Δ</mi><mo>≥</mo><mn>4</mn></math></span>, if <em>G</em> is isomorphic to a wheel <span><math><msub><mrow><mi>W</mi></mrow><mrow><mi>Δ</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> where Δ is odd, then <span><math><msubsup><mrow><mi>χ</mi></mrow><mrow><mo>⊂</mo></mrow><mrow><mo>′</mo></mrow></msubsup><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>Δ</mi><mo>+</mo><mn>2</mn></math></span>, otherwise <span><math><msubsup><mrow><mi>χ</mi></mrow><mrow><mo>⊂</mo></mrow><mrow><mo>′</mo></mrow></msubsup><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>Δ</mi><mo>+</mo><mn>1</mn></math></span>. We also show a special cubic Halin graph with <span><math><msubsup><mrow><mi>χ</mi></mrow><mrow><mo>⊂</mo></mrow><mrow><mo>′</mo></mrow></msubsup><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mn>5</mn></math></span>.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 2\",\"pages\":\"Article 114266\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X24003972\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24003972","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

δ(G)≥2的图 G 的无包含边着色是一种适当的边着色,使得任何顶点的颜色集合都不包含在其任何相邻顶点的颜色集合中。G 的无包含边染色所需的最少颜色数称为无包含色度指数,用 χ⊂′(G)表示。在本文中,我们证明了对于最大度数为 Δ≥4 的 Halin 图 G,如果 G 与 Δ 为奇数的轮 WΔ+1 同构,则 χ⊂′(G)=Δ+2 ,否则 χ⊂′(G)=Δ+1。我们还展示了一个特殊的立方哈林图,其χ⊂′(G)=5。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the inclusion chromatic index of a Halin graph
An inclusion-free edge-coloring of a graph G with δ(G)2 is a proper edge-coloring such that the set of colors incident with any vertex is not contained in the set of colors incident to any of its neighbors. The minimum number of colors needed in an inclusion-free edge-coloring of G is called the inclusion-free chromaticindex, denoted by χ(G). In this paper, we show that for a Halin graph G with maximum degree Δ4, if G is isomorphic to a wheel WΔ+1 where Δ is odd, then χ(G)=Δ+2, otherwise χ(G)=Δ+1. We also show a special cubic Halin graph with χ(G)=5.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信