超越平滑性:负拉普拉奇正则化图神经网络的一般优化框架

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
{"title":"超越平滑性:负拉普拉奇正则化图神经网络的一般优化框架","authors":"","doi":"10.1016/j.neunet.2024.106704","DOIUrl":null,"url":null,"abstract":"<div><div>Graph Neural Networks (GNNs) have drawn great attention in handling graph-structured data. To characterize the message-passing mechanism of GNNs, recent studies have established a unified framework that models the graph convolution operation as a graph signal denoising problem. While increasing interpretability, this framework often performs poorly on heterophilic graphs and also leads to shallow and fragile GNNs in practice. The key reason is that it encourages feature smoothness, but ignores the high-frequency information of node features. To address this issue, we propose a general framework for GNNs via relaxation of the smoothness regularization. In particular, it employs an information aggregation mechanism to learn the low- and high-frequency components adaptively from data, offering more flexible graph convolution operators compared to the smoothness-promoted framework. Theoretical analyses demonstrate that our framework can capture both low- and high-frequency information of node features, effectively. Experiments on nine benchmark datasets show that our framework achieves the state-of-the-art performance in most cases. Furthermore, it can be used to handle deep models and adversarial attacks.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Beyond smoothness: A general optimization framework for graph neural networks with negative Laplacian regularization\",\"authors\":\"\",\"doi\":\"10.1016/j.neunet.2024.106704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Graph Neural Networks (GNNs) have drawn great attention in handling graph-structured data. To characterize the message-passing mechanism of GNNs, recent studies have established a unified framework that models the graph convolution operation as a graph signal denoising problem. While increasing interpretability, this framework often performs poorly on heterophilic graphs and also leads to shallow and fragile GNNs in practice. The key reason is that it encourages feature smoothness, but ignores the high-frequency information of node features. To address this issue, we propose a general framework for GNNs via relaxation of the smoothness regularization. In particular, it employs an information aggregation mechanism to learn the low- and high-frequency components adaptively from data, offering more flexible graph convolution operators compared to the smoothness-promoted framework. Theoretical analyses demonstrate that our framework can capture both low- and high-frequency information of node features, effectively. Experiments on nine benchmark datasets show that our framework achieves the state-of-the-art performance in most cases. Furthermore, it can be used to handle deep models and adversarial attacks.</div></div>\",\"PeriodicalId\":49763,\"journal\":{\"name\":\"Neural Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893608024006282\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608024006282","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

图神经网络(GNN)在处理图结构数据方面备受关注。为了描述图神经网络的信息传递机制,最近的研究建立了一个统一的框架,将图卷积操作建模为图信号去噪问题。这种框架虽然提高了可解释性,但在异嗜性图上往往表现不佳,而且在实践中还会导致浅层和脆弱的 GNN。其关键原因在于它鼓励特征平滑,却忽略了节点特征的高频信息。为了解决这个问题,我们提出了一个通过放松平滑正则化来实现 GNN 的通用框架。特别是,它采用了一种信息聚合机制,从数据中自适应性地学习低频和高频成分,与促进平滑的框架相比,提供了更灵活的图卷积算子。理论分析表明,我们的框架能有效捕捉节点特征的低频和高频信息。在九个基准数据集上的实验表明,我们的框架在大多数情况下都达到了最先进的性能。此外,它还可用于处理深度模型和对抗性攻击。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Beyond smoothness: A general optimization framework for graph neural networks with negative Laplacian regularization
Graph Neural Networks (GNNs) have drawn great attention in handling graph-structured data. To characterize the message-passing mechanism of GNNs, recent studies have established a unified framework that models the graph convolution operation as a graph signal denoising problem. While increasing interpretability, this framework often performs poorly on heterophilic graphs and also leads to shallow and fragile GNNs in practice. The key reason is that it encourages feature smoothness, but ignores the high-frequency information of node features. To address this issue, we propose a general framework for GNNs via relaxation of the smoothness regularization. In particular, it employs an information aggregation mechanism to learn the low- and high-frequency components adaptively from data, offering more flexible graph convolution operators compared to the smoothness-promoted framework. Theoretical analyses demonstrate that our framework can capture both low- and high-frequency information of node features, effectively. Experiments on nine benchmark datasets show that our framework achieves the state-of-the-art performance in most cases. Furthermore, it can be used to handle deep models and adversarial attacks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信