Heng-Ci Tian , Fang-Zhen Teng , Xin-Yang Chen , Ilya N. Bindeman , Jeffrey G. Ryan
{"title":"利用钾同位素追踪岛弧成岩过程","authors":"Heng-Ci Tian , Fang-Zhen Teng , Xin-Yang Chen , Ilya N. Bindeman , Jeffrey G. Ryan","doi":"10.1016/j.epsl.2024.119016","DOIUrl":null,"url":null,"abstract":"<div><div>Arc lavas display significant chemical and isotopic heterogeneity mainly due to recycled materials from subducting slabs. However, the extent to which different types of subducted sediments and oceanic crust contribute to the petrogenesis of arc magmas, as well as the roles of the mantle wedge and overlying crust, remain debated. Potassium (K) isotopes have the potential to provide new insights into the processes and sources of arc magmatism because sediments and altered oceanic crust are highly enriched in K and have distinct δ<sup>41</sup>K values compared with the mid-ocean ridge basalts and upper mantle (-0.42 ± 0.08‰, 2SD). Here we report K isotopic compositions of 32 well-characterized arc lavas from the circum-Pacific margins. We find low δ<sup>41</sup>K values (-0.86‰ ∼ -0.38‰) in the Setouchi arc samples, which we interpret as the result of incorporation of isotopically light sediments into the subarc mantle. The Kurile and Panama arc lavas have high δ<sup>41</sup>K values (-0.36‰ ∼ 0.02‰) and their δ<sup>41</sup>K values correlate positively with the Ba/Th ratios, indicating ∼0.5–2% fluid additions from dehydrated altered crust. Adakites have variable but overall heavy K isotope compositions (-0.44‰ ∼ -0.01‰) , which correlate with the diagnostic trace-element indicators of Sr/Y, La/Yb and K/U. These results indicate limited K isotope fractionation during metamorphic dehydration of hot slab subduction, and/or fluid metasomatism before the slab melting. Our study suggests that fluids and melts originating from subducting sediments and slabs exerted distinct influences on the origins of different types of arc magmas, demonstrating the significance of K isotopes in studying the petrogenesis of arc magmas.</div></div>","PeriodicalId":11481,"journal":{"name":"Earth and Planetary Science Letters","volume":"646 ","pages":"Article 119016"},"PeriodicalIF":4.8000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012821X24004485/pdfft?md5=da4db8d8b9d80e12ff368d07083c6390&pid=1-s2.0-S0012821X24004485-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Tracing island arc petrogenesis using potassium isotopes\",\"authors\":\"Heng-Ci Tian , Fang-Zhen Teng , Xin-Yang Chen , Ilya N. Bindeman , Jeffrey G. Ryan\",\"doi\":\"10.1016/j.epsl.2024.119016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Arc lavas display significant chemical and isotopic heterogeneity mainly due to recycled materials from subducting slabs. However, the extent to which different types of subducted sediments and oceanic crust contribute to the petrogenesis of arc magmas, as well as the roles of the mantle wedge and overlying crust, remain debated. Potassium (K) isotopes have the potential to provide new insights into the processes and sources of arc magmatism because sediments and altered oceanic crust are highly enriched in K and have distinct δ<sup>41</sup>K values compared with the mid-ocean ridge basalts and upper mantle (-0.42 ± 0.08‰, 2SD). Here we report K isotopic compositions of 32 well-characterized arc lavas from the circum-Pacific margins. We find low δ<sup>41</sup>K values (-0.86‰ ∼ -0.38‰) in the Setouchi arc samples, which we interpret as the result of incorporation of isotopically light sediments into the subarc mantle. The Kurile and Panama arc lavas have high δ<sup>41</sup>K values (-0.36‰ ∼ 0.02‰) and their δ<sup>41</sup>K values correlate positively with the Ba/Th ratios, indicating ∼0.5–2% fluid additions from dehydrated altered crust. Adakites have variable but overall heavy K isotope compositions (-0.44‰ ∼ -0.01‰) , which correlate with the diagnostic trace-element indicators of Sr/Y, La/Yb and K/U. These results indicate limited K isotope fractionation during metamorphic dehydration of hot slab subduction, and/or fluid metasomatism before the slab melting. Our study suggests that fluids and melts originating from subducting sediments and slabs exerted distinct influences on the origins of different types of arc magmas, demonstrating the significance of K isotopes in studying the petrogenesis of arc magmas.</div></div>\",\"PeriodicalId\":11481,\"journal\":{\"name\":\"Earth and Planetary Science Letters\",\"volume\":\"646 \",\"pages\":\"Article 119016\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0012821X24004485/pdfft?md5=da4db8d8b9d80e12ff368d07083c6390&pid=1-s2.0-S0012821X24004485-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth and Planetary Science Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012821X24004485\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Planetary Science Letters","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012821X24004485","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Tracing island arc petrogenesis using potassium isotopes
Arc lavas display significant chemical and isotopic heterogeneity mainly due to recycled materials from subducting slabs. However, the extent to which different types of subducted sediments and oceanic crust contribute to the petrogenesis of arc magmas, as well as the roles of the mantle wedge and overlying crust, remain debated. Potassium (K) isotopes have the potential to provide new insights into the processes and sources of arc magmatism because sediments and altered oceanic crust are highly enriched in K and have distinct δ41K values compared with the mid-ocean ridge basalts and upper mantle (-0.42 ± 0.08‰, 2SD). Here we report K isotopic compositions of 32 well-characterized arc lavas from the circum-Pacific margins. We find low δ41K values (-0.86‰ ∼ -0.38‰) in the Setouchi arc samples, which we interpret as the result of incorporation of isotopically light sediments into the subarc mantle. The Kurile and Panama arc lavas have high δ41K values (-0.36‰ ∼ 0.02‰) and their δ41K values correlate positively with the Ba/Th ratios, indicating ∼0.5–2% fluid additions from dehydrated altered crust. Adakites have variable but overall heavy K isotope compositions (-0.44‰ ∼ -0.01‰) , which correlate with the diagnostic trace-element indicators of Sr/Y, La/Yb and K/U. These results indicate limited K isotope fractionation during metamorphic dehydration of hot slab subduction, and/or fluid metasomatism before the slab melting. Our study suggests that fluids and melts originating from subducting sediments and slabs exerted distinct influences on the origins of different types of arc magmas, demonstrating the significance of K isotopes in studying the petrogenesis of arc magmas.
期刊介绍:
Earth and Planetary Science Letters (EPSL) is a leading journal for researchers across the entire Earth and planetary sciences community. It publishes concise, exciting, high-impact articles ("Letters") of broad interest. Its focus is on physical and chemical processes, the evolution and general properties of the Earth and planets - from their deep interiors to their atmospheres. EPSL also includes a Frontiers section, featuring invited high-profile synthesis articles by leading experts on timely topics to bring cutting-edge research to the wider community.