Yingying Zhang , Yuduan Diao , Sayed Haidar Abbas Raza , Ji Huang , Hongyang Wang , Weilong Tu , Jiajie Zhang , Jieke Zhou , Yongsong Tan
{"title":"利用多组学分析确定茶陵黑猪猪肉风味特征","authors":"Yingying Zhang , Yuduan Diao , Sayed Haidar Abbas Raza , Ji Huang , Hongyang Wang , Weilong Tu , Jiajie Zhang , Jieke Zhou , Yongsong Tan","doi":"10.1016/j.meatsci.2024.109668","DOIUrl":null,"url":null,"abstract":"<div><div>The study investigated the flavor variations in four different fresh pork cuts (<em>longissimus thoracis</em>, LT; trapezius muscle, TM; hamstring muscle, HM; Pork Belly, PB) from Chalu black pigs (ten castrated boars) using multi-omics techniques. The research also explored the influence of muscle fiber type on the flavor profiles of these cuts. Results from quantitative real-time PCR (qRT-PCR) indicated significant differences in muscle fiber type across the four pork cuts in various anatomical locations. Each cut exhibited distinctive volatile organic compounds (VOCs) profiles, with HM displaying a sweet and fruity green flavor, LT showcasing a fatty and nutty taste, PB presenting a fresh, citrusy, and green flavor, and TM offering a floral and bitter note. Variations in fatty acid carbon number and saturation were observed among the cuts, with HM, LT, and PB being rich in fatty acids with C16–18, C19–21, and 3 double bonds, respectively. The metabolites specific to each cut were found to play key roles in different metabolic pathways, such as protein-related pathways for HM, arginine biosynthesis for LT, lysine biosynthesis for PB, and D-arginine and D-ornithine metabolism for TM. Differentially expressed genes (DEGs) were associated with amino acid metabolism for HM, glycolysis/gluconeogenesis for LT, and cellular aromatic compound organization for PB. Notably, HM and PB displayed unique flavor characteristics, while TM exhibited relatively neutral features. The study also identified correlations among VOCs, muscle fiber type, lipids, metabolites, and gene patterns specific to each cut, highlighting the complex interplay of factors influencing pork flavor.</div></div>","PeriodicalId":389,"journal":{"name":"Meat Science","volume":"219 ","pages":"Article 109668"},"PeriodicalIF":7.1000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flavor characterization of pork cuts in Chalu black pigs using multi-omics analysis\",\"authors\":\"Yingying Zhang , Yuduan Diao , Sayed Haidar Abbas Raza , Ji Huang , Hongyang Wang , Weilong Tu , Jiajie Zhang , Jieke Zhou , Yongsong Tan\",\"doi\":\"10.1016/j.meatsci.2024.109668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The study investigated the flavor variations in four different fresh pork cuts (<em>longissimus thoracis</em>, LT; trapezius muscle, TM; hamstring muscle, HM; Pork Belly, PB) from Chalu black pigs (ten castrated boars) using multi-omics techniques. The research also explored the influence of muscle fiber type on the flavor profiles of these cuts. Results from quantitative real-time PCR (qRT-PCR) indicated significant differences in muscle fiber type across the four pork cuts in various anatomical locations. Each cut exhibited distinctive volatile organic compounds (VOCs) profiles, with HM displaying a sweet and fruity green flavor, LT showcasing a fatty and nutty taste, PB presenting a fresh, citrusy, and green flavor, and TM offering a floral and bitter note. Variations in fatty acid carbon number and saturation were observed among the cuts, with HM, LT, and PB being rich in fatty acids with C16–18, C19–21, and 3 double bonds, respectively. The metabolites specific to each cut were found to play key roles in different metabolic pathways, such as protein-related pathways for HM, arginine biosynthesis for LT, lysine biosynthesis for PB, and D-arginine and D-ornithine metabolism for TM. Differentially expressed genes (DEGs) were associated with amino acid metabolism for HM, glycolysis/gluconeogenesis for LT, and cellular aromatic compound organization for PB. Notably, HM and PB displayed unique flavor characteristics, while TM exhibited relatively neutral features. The study also identified correlations among VOCs, muscle fiber type, lipids, metabolites, and gene patterns specific to each cut, highlighting the complex interplay of factors influencing pork flavor.</div></div>\",\"PeriodicalId\":389,\"journal\":{\"name\":\"Meat Science\",\"volume\":\"219 \",\"pages\":\"Article 109668\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Meat Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0309174024002456\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meat Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0309174024002456","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Flavor characterization of pork cuts in Chalu black pigs using multi-omics analysis
The study investigated the flavor variations in four different fresh pork cuts (longissimus thoracis, LT; trapezius muscle, TM; hamstring muscle, HM; Pork Belly, PB) from Chalu black pigs (ten castrated boars) using multi-omics techniques. The research also explored the influence of muscle fiber type on the flavor profiles of these cuts. Results from quantitative real-time PCR (qRT-PCR) indicated significant differences in muscle fiber type across the four pork cuts in various anatomical locations. Each cut exhibited distinctive volatile organic compounds (VOCs) profiles, with HM displaying a sweet and fruity green flavor, LT showcasing a fatty and nutty taste, PB presenting a fresh, citrusy, and green flavor, and TM offering a floral and bitter note. Variations in fatty acid carbon number and saturation were observed among the cuts, with HM, LT, and PB being rich in fatty acids with C16–18, C19–21, and 3 double bonds, respectively. The metabolites specific to each cut were found to play key roles in different metabolic pathways, such as protein-related pathways for HM, arginine biosynthesis for LT, lysine biosynthesis for PB, and D-arginine and D-ornithine metabolism for TM. Differentially expressed genes (DEGs) were associated with amino acid metabolism for HM, glycolysis/gluconeogenesis for LT, and cellular aromatic compound organization for PB. Notably, HM and PB displayed unique flavor characteristics, while TM exhibited relatively neutral features. The study also identified correlations among VOCs, muscle fiber type, lipids, metabolites, and gene patterns specific to each cut, highlighting the complex interplay of factors influencing pork flavor.
期刊介绍:
The aim of Meat Science is to serve as a suitable platform for the dissemination of interdisciplinary and international knowledge on all factors influencing the properties of meat. While the journal primarily focuses on the flesh of mammals, contributions related to poultry will be considered if they enhance the overall understanding of the relationship between muscle nature and meat quality post mortem. Additionally, papers on large birds (e.g., emus, ostriches) as well as wild-captured mammals and crocodiles will be welcomed.