Hui Xu , Lin Tang , Ruijun Ma , Huaguo Liang , Zhengfeng Huang , Tianming Ni , Jiuqi Li , Xiaodong Ai
{"title":"基于双输出 C 元的高性价比、高稳健性三节点重置自恢复锁存器设计","authors":"Hui Xu , Lin Tang , Ruijun Ma , Huaguo Liang , Zhengfeng Huang , Tianming Ni , Jiuqi Li , Xiaodong Ai","doi":"10.1016/j.mejo.2024.106422","DOIUrl":null,"url":null,"abstract":"<div><div>With the continuous reduction of feature size of transistors, single-event triple-node-upsets (TNUs) induced by the striking of radiation particles in nano-scale CMOS circuits have emerged as a significant reliability concern. To address the shortcomings of existing radiation-hardened designs, including low reliability and high overhead, this paper proposes a cost-effective and highly robust TNU self-recovery latch design called DOCTRL. The proposed DOCTRL latch primarily consists of six dual-output C-elements (DOCs) and two clocked DOCs. By utilizing DOCs with two independent outputs, the proposed DOCTRL latch achieves a smaller area overhead. In addition, a four-level circular interlock matrix connection is designed to recover all possible TNUs within the proposed DOCTRL latch. Meanwhile, the latch also incorporates clock gating technology and a high-speed path to minimize power consumption and delay penalties. Simulation results indicate that the proposed DOCTRL reduces area by an average of 32.43 %, power consumption by 46.84 %, delay by 14.43 %, and area-power-delay product (APDP) by 69.55 %, compared to the five typical TNU self-recovery latches (SCLCRL, TNUSH, LCTNUCR, ADTRL, TSRL). Furthermore, detailed process, voltage, temperature (PVT), and Monte Carlo simulations verify the robustness of the proposed DOCTRL latch.</div></div>","PeriodicalId":49818,"journal":{"name":"Microelectronics Journal","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A cost-effective and highly robust triple-node-upset self-recoverable latch design based on dual-output C-elements\",\"authors\":\"Hui Xu , Lin Tang , Ruijun Ma , Huaguo Liang , Zhengfeng Huang , Tianming Ni , Jiuqi Li , Xiaodong Ai\",\"doi\":\"10.1016/j.mejo.2024.106422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With the continuous reduction of feature size of transistors, single-event triple-node-upsets (TNUs) induced by the striking of radiation particles in nano-scale CMOS circuits have emerged as a significant reliability concern. To address the shortcomings of existing radiation-hardened designs, including low reliability and high overhead, this paper proposes a cost-effective and highly robust TNU self-recovery latch design called DOCTRL. The proposed DOCTRL latch primarily consists of six dual-output C-elements (DOCs) and two clocked DOCs. By utilizing DOCs with two independent outputs, the proposed DOCTRL latch achieves a smaller area overhead. In addition, a four-level circular interlock matrix connection is designed to recover all possible TNUs within the proposed DOCTRL latch. Meanwhile, the latch also incorporates clock gating technology and a high-speed path to minimize power consumption and delay penalties. Simulation results indicate that the proposed DOCTRL reduces area by an average of 32.43 %, power consumption by 46.84 %, delay by 14.43 %, and area-power-delay product (APDP) by 69.55 %, compared to the five typical TNU self-recovery latches (SCLCRL, TNUSH, LCTNUCR, ADTRL, TSRL). Furthermore, detailed process, voltage, temperature (PVT), and Monte Carlo simulations verify the robustness of the proposed DOCTRL latch.</div></div>\",\"PeriodicalId\":49818,\"journal\":{\"name\":\"Microelectronics Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microelectronics Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1879239124001267\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1879239124001267","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A cost-effective and highly robust triple-node-upset self-recoverable latch design based on dual-output C-elements
With the continuous reduction of feature size of transistors, single-event triple-node-upsets (TNUs) induced by the striking of radiation particles in nano-scale CMOS circuits have emerged as a significant reliability concern. To address the shortcomings of existing radiation-hardened designs, including low reliability and high overhead, this paper proposes a cost-effective and highly robust TNU self-recovery latch design called DOCTRL. The proposed DOCTRL latch primarily consists of six dual-output C-elements (DOCs) and two clocked DOCs. By utilizing DOCs with two independent outputs, the proposed DOCTRL latch achieves a smaller area overhead. In addition, a four-level circular interlock matrix connection is designed to recover all possible TNUs within the proposed DOCTRL latch. Meanwhile, the latch also incorporates clock gating technology and a high-speed path to minimize power consumption and delay penalties. Simulation results indicate that the proposed DOCTRL reduces area by an average of 32.43 %, power consumption by 46.84 %, delay by 14.43 %, and area-power-delay product (APDP) by 69.55 %, compared to the five typical TNU self-recovery latches (SCLCRL, TNUSH, LCTNUCR, ADTRL, TSRL). Furthermore, detailed process, voltage, temperature (PVT), and Monte Carlo simulations verify the robustness of the proposed DOCTRL latch.
期刊介绍:
Published since 1969, the Microelectronics Journal is an international forum for the dissemination of research and applications of microelectronic systems, circuits, and emerging technologies. Papers published in the Microelectronics Journal have undergone peer review to ensure originality, relevance, and timeliness. The journal thus provides a worldwide, regular, and comprehensive update on microelectronic circuits and systems.
The Microelectronics Journal invites papers describing significant research and applications in all of the areas listed below. Comprehensive review/survey papers covering recent developments will also be considered. The Microelectronics Journal covers circuits and systems. This topic includes but is not limited to: Analog, digital, mixed, and RF circuits and related design methodologies; Logic, architectural, and system level synthesis; Testing, design for testability, built-in self-test; Area, power, and thermal analysis and design; Mixed-domain simulation and design; Embedded systems; Non-von Neumann computing and related technologies and circuits; Design and test of high complexity systems integration; SoC, NoC, SIP, and NIP design and test; 3-D integration design and analysis; Emerging device technologies and circuits, such as FinFETs, SETs, spintronics, SFQ, MTJ, etc.
Application aspects such as signal and image processing including circuits for cryptography, sensors, and actuators including sensor networks, reliability and quality issues, and economic models are also welcome.