Chuang Li , Zhiqiang Song , Fei Wang , Zongkai Wang , Yunhe Liu
{"title":"考虑双模量效应的沥青混凝土核心堆石坝抗震分析","authors":"Chuang Li , Zhiqiang Song , Fei Wang , Zongkai Wang , Yunhe Liu","doi":"10.1016/j.soildyn.2024.108984","DOIUrl":null,"url":null,"abstract":"<div><div>In China, with the extensive development of pumped storage power stations, asphalt concrete core rockfill dams have become the preferred dam type because of their good deformation adaptability and impermeability. In seismic-prone western regions of China, the seismic safety of asphalt concrete cores is particularly important. However, asphalt concrete materials used in hydraulic engineering exhibit significant differences in their tensile and compressive moduli under low-temperature conditions, which has not been considered in existing constitutive models. In this study, a dynamic constitutive model considering the bimodulus effect of asphalt concrete was developed on the basis of dynamic tension and compression tests. Using this model, the influence of the bimodulus characteristics on the dynamic response of the core was investigated. The results indicate that a bimodulus constitutive model can effectively simulate the stress‒strain relationship of asphalt concrete materials at low temperatures. Compared with the bimodulus model, the use of the monomodulus model for calculations results in a significant decrease in compressive stress and a substantial increase in tensile stress of the core. Specifically, using the tensile and compressive monomodulus models led to maximum reductions in tensile stress of 42.9 % and an increase by 336.8 %, respectively. Neglecting the bimodulus effect may lead to misjudgment of the damage area, so the bimodulus effect on the seismic safety of dam cores should not be ignored.</div></div>","PeriodicalId":49502,"journal":{"name":"Soil Dynamics and Earthquake Engineering","volume":"187 ","pages":"Article 108984"},"PeriodicalIF":4.2000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seismic analysis of asphalt concrete core rockfill dams considering the bimodulus effect\",\"authors\":\"Chuang Li , Zhiqiang Song , Fei Wang , Zongkai Wang , Yunhe Liu\",\"doi\":\"10.1016/j.soildyn.2024.108984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In China, with the extensive development of pumped storage power stations, asphalt concrete core rockfill dams have become the preferred dam type because of their good deformation adaptability and impermeability. In seismic-prone western regions of China, the seismic safety of asphalt concrete cores is particularly important. However, asphalt concrete materials used in hydraulic engineering exhibit significant differences in their tensile and compressive moduli under low-temperature conditions, which has not been considered in existing constitutive models. In this study, a dynamic constitutive model considering the bimodulus effect of asphalt concrete was developed on the basis of dynamic tension and compression tests. Using this model, the influence of the bimodulus characteristics on the dynamic response of the core was investigated. The results indicate that a bimodulus constitutive model can effectively simulate the stress‒strain relationship of asphalt concrete materials at low temperatures. Compared with the bimodulus model, the use of the monomodulus model for calculations results in a significant decrease in compressive stress and a substantial increase in tensile stress of the core. Specifically, using the tensile and compressive monomodulus models led to maximum reductions in tensile stress of 42.9 % and an increase by 336.8 %, respectively. Neglecting the bimodulus effect may lead to misjudgment of the damage area, so the bimodulus effect on the seismic safety of dam cores should not be ignored.</div></div>\",\"PeriodicalId\":49502,\"journal\":{\"name\":\"Soil Dynamics and Earthquake Engineering\",\"volume\":\"187 \",\"pages\":\"Article 108984\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil Dynamics and Earthquake Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0267726124005360\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Dynamics and Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0267726124005360","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Seismic analysis of asphalt concrete core rockfill dams considering the bimodulus effect
In China, with the extensive development of pumped storage power stations, asphalt concrete core rockfill dams have become the preferred dam type because of their good deformation adaptability and impermeability. In seismic-prone western regions of China, the seismic safety of asphalt concrete cores is particularly important. However, asphalt concrete materials used in hydraulic engineering exhibit significant differences in their tensile and compressive moduli under low-temperature conditions, which has not been considered in existing constitutive models. In this study, a dynamic constitutive model considering the bimodulus effect of asphalt concrete was developed on the basis of dynamic tension and compression tests. Using this model, the influence of the bimodulus characteristics on the dynamic response of the core was investigated. The results indicate that a bimodulus constitutive model can effectively simulate the stress‒strain relationship of asphalt concrete materials at low temperatures. Compared with the bimodulus model, the use of the monomodulus model for calculations results in a significant decrease in compressive stress and a substantial increase in tensile stress of the core. Specifically, using the tensile and compressive monomodulus models led to maximum reductions in tensile stress of 42.9 % and an increase by 336.8 %, respectively. Neglecting the bimodulus effect may lead to misjudgment of the damage area, so the bimodulus effect on the seismic safety of dam cores should not be ignored.
期刊介绍:
The journal aims to encourage and enhance the role of mechanics and other disciplines as they relate to earthquake engineering by providing opportunities for the publication of the work of applied mathematicians, engineers and other applied scientists involved in solving problems closely related to the field of earthquake engineering and geotechnical earthquake engineering.
Emphasis is placed on new concepts and techniques, but case histories will also be published if they enhance the presentation and understanding of new technical concepts.