{"title":"具有随机材料特性和几何缺陷的声学超材料带隙的不确定性量化","authors":"","doi":"10.1016/j.compstruc.2024.107511","DOIUrl":null,"url":null,"abstract":"<div><div>Acoustic metamaterials are a subject of increasing study and utility. Through designed combinations of geometries with material properties, acoustic metamaterials can be built to arbitrarily manipulate acoustic waves for various applications. Despite the theoretical advances in this field, however, acoustic metamaterials have seen limited penetration into industry and commercial use. This is largely due to the difficulty of manufacturing the intricate geometries that are integral to their function and the sensitivity of metamaterial designs to material batch variability and manufacturing defects. Capturing the effects of stochastic material properties and geometric defects requires empirical testing of manufactured samples, but this can quickly become prohibitively expensive with higher precision requirements or with an increasing number of input variables. This paper demonstrates how uncertainty quantification techniques, and more specifically the use of polynomial chaos expansions and spectral projections, can be used to greatly reduce sampling needs for characterizing acoustic metamaterial dispersion curves. With a novel method of encoding geometric defects in a 1D, interpretable, resolution-independent way, our uncertainty quantification approach allows for both stochastic material properties and geometric defects to be considered simultaneously. Two to three orders of magnitude sampling reductions down to <span><math><mo>∼</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>0</mn></mrow></msup></math></span> and <span><math><mo>∼</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>1</mn></mrow></msup></math></span> were achieved in 1D and 7D input space scenarios, respectively. Remarkably, this reduction in sampling was possible while preserving accurate output probability distributions of the metamaterial performance characteristics (bandgap size and location).</div></div>","PeriodicalId":50626,"journal":{"name":"Computers & Structures","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncertainty quantification of acoustic metamaterial bandgaps with stochastic material properties and geometric defects\",\"authors\":\"\",\"doi\":\"10.1016/j.compstruc.2024.107511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Acoustic metamaterials are a subject of increasing study and utility. Through designed combinations of geometries with material properties, acoustic metamaterials can be built to arbitrarily manipulate acoustic waves for various applications. Despite the theoretical advances in this field, however, acoustic metamaterials have seen limited penetration into industry and commercial use. This is largely due to the difficulty of manufacturing the intricate geometries that are integral to their function and the sensitivity of metamaterial designs to material batch variability and manufacturing defects. Capturing the effects of stochastic material properties and geometric defects requires empirical testing of manufactured samples, but this can quickly become prohibitively expensive with higher precision requirements or with an increasing number of input variables. This paper demonstrates how uncertainty quantification techniques, and more specifically the use of polynomial chaos expansions and spectral projections, can be used to greatly reduce sampling needs for characterizing acoustic metamaterial dispersion curves. With a novel method of encoding geometric defects in a 1D, interpretable, resolution-independent way, our uncertainty quantification approach allows for both stochastic material properties and geometric defects to be considered simultaneously. Two to three orders of magnitude sampling reductions down to <span><math><mo>∼</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>0</mn></mrow></msup></math></span> and <span><math><mo>∼</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>1</mn></mrow></msup></math></span> were achieved in 1D and 7D input space scenarios, respectively. Remarkably, this reduction in sampling was possible while preserving accurate output probability distributions of the metamaterial performance characteristics (bandgap size and location).</div></div>\",\"PeriodicalId\":50626,\"journal\":{\"name\":\"Computers & Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045794924002402\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045794924002402","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Uncertainty quantification of acoustic metamaterial bandgaps with stochastic material properties and geometric defects
Acoustic metamaterials are a subject of increasing study and utility. Through designed combinations of geometries with material properties, acoustic metamaterials can be built to arbitrarily manipulate acoustic waves for various applications. Despite the theoretical advances in this field, however, acoustic metamaterials have seen limited penetration into industry and commercial use. This is largely due to the difficulty of manufacturing the intricate geometries that are integral to their function and the sensitivity of metamaterial designs to material batch variability and manufacturing defects. Capturing the effects of stochastic material properties and geometric defects requires empirical testing of manufactured samples, but this can quickly become prohibitively expensive with higher precision requirements or with an increasing number of input variables. This paper demonstrates how uncertainty quantification techniques, and more specifically the use of polynomial chaos expansions and spectral projections, can be used to greatly reduce sampling needs for characterizing acoustic metamaterial dispersion curves. With a novel method of encoding geometric defects in a 1D, interpretable, resolution-independent way, our uncertainty quantification approach allows for both stochastic material properties and geometric defects to be considered simultaneously. Two to three orders of magnitude sampling reductions down to and were achieved in 1D and 7D input space scenarios, respectively. Remarkably, this reduction in sampling was possible while preserving accurate output probability distributions of the metamaterial performance characteristics (bandgap size and location).
期刊介绍:
Computers & Structures publishes advances in the development and use of computational methods for the solution of problems in engineering and the sciences. The range of appropriate contributions is wide, and includes papers on establishing appropriate mathematical models and their numerical solution in all areas of mechanics. The journal also includes articles that present a substantial review of a field in the topics of the journal.