全局可识别的 ODEs 重参数化算法

IF 0.6 4区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Sebastian Falkensteiner , Alexey Ovchinnikov , J. Rafael Sendra
{"title":"全局可识别的 ODEs 重参数化算法","authors":"Sebastian Falkensteiner ,&nbsp;Alexey Ovchinnikov ,&nbsp;J. Rafael Sendra","doi":"10.1016/j.jsc.2024.102385","DOIUrl":null,"url":null,"abstract":"<div><div>Structural global parameter identifiability indicates whether one can determine a parameter's value in an ODE model from given inputs and outputs. If a given model has parameters for which there is exactly one value, such parameters are called globally identifiable. Given an ODE model involving not globally identifiable parameters, first we transform the system into one with locally identifiable parameters. As a main contribution of this paper, then we present a procedure for replacing, if possible, the ODE model with an equivalent one that has globally identifiable parameters. We first derive this as an algorithm for one-dimensional ODE models and then reuse this approach for higher-dimensional models.</div></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algorithm for globally identifiable reparametrizations of ODEs\",\"authors\":\"Sebastian Falkensteiner ,&nbsp;Alexey Ovchinnikov ,&nbsp;J. Rafael Sendra\",\"doi\":\"10.1016/j.jsc.2024.102385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Structural global parameter identifiability indicates whether one can determine a parameter's value in an ODE model from given inputs and outputs. If a given model has parameters for which there is exactly one value, such parameters are called globally identifiable. Given an ODE model involving not globally identifiable parameters, first we transform the system into one with locally identifiable parameters. As a main contribution of this paper, then we present a procedure for replacing, if possible, the ODE model with an equivalent one that has globally identifiable parameters. We first derive this as an algorithm for one-dimensional ODE models and then reuse this approach for higher-dimensional models.</div></div>\",\"PeriodicalId\":50031,\"journal\":{\"name\":\"Journal of Symbolic Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Symbolic Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0747717124000890\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symbolic Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717124000890","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

结构全局参数可识别性是指能否根据给定的输入和输出确定一个 ODE 模型中的参数值。如果给定模型中的参数只有一个值,这种参数就称为全局可识别参数。给定一个涉及非全局可识别参数的 ODE 模型,我们首先将该系统转换为具有局部可识别参数的系统。然后,作为本文的主要贡献,我们提出了一个程序,在可能的情况下,用一个具有全局可识别参数的等效模型替换 ODE 模型。我们首先将其推导为一维 ODE 模型的算法,然后将此方法用于高维模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algorithm for globally identifiable reparametrizations of ODEs
Structural global parameter identifiability indicates whether one can determine a parameter's value in an ODE model from given inputs and outputs. If a given model has parameters for which there is exactly one value, such parameters are called globally identifiable. Given an ODE model involving not globally identifiable parameters, first we transform the system into one with locally identifiable parameters. As a main contribution of this paper, then we present a procedure for replacing, if possible, the ODE model with an equivalent one that has globally identifiable parameters. We first derive this as an algorithm for one-dimensional ODE models and then reuse this approach for higher-dimensional models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Symbolic Computation
Journal of Symbolic Computation 工程技术-计算机:理论方法
CiteScore
2.10
自引率
14.30%
发文量
75
审稿时长
142 days
期刊介绍: An international journal, the Journal of Symbolic Computation, founded by Bruno Buchberger in 1985, is directed to mathematicians and computer scientists who have a particular interest in symbolic computation. The journal provides a forum for research in the algorithmic treatment of all types of symbolic objects: objects in formal languages (terms, formulas, programs); algebraic objects (elements in basic number domains, polynomials, residue classes, etc.); and geometrical objects. It is the explicit goal of the journal to promote the integration of symbolic computation by establishing one common avenue of communication for researchers working in the different subareas. It is also important that the algorithmic achievements of these areas should be made available to the human problem-solver in integrated software systems for symbolic computation. To help this integration, the journal publishes invited tutorial surveys as well as Applications Letters and System Descriptions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信