基于神经网络的 InP 基 HEMT 辐射效应建模

IF 1.9 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Y.H. Zhong , X.L. Han , H.Q. Yun , B. Mei , Y.B. Su , Z. Jin , C. Zhang
{"title":"基于神经网络的 InP 基 HEMT 辐射效应建模","authors":"Y.H. Zhong ,&nbsp;X.L. Han ,&nbsp;H.Q. Yun ,&nbsp;B. Mei ,&nbsp;Y.B. Su ,&nbsp;Z. Jin ,&nbsp;C. Zhang","doi":"10.1016/j.mejo.2024.106414","DOIUrl":null,"url":null,"abstract":"<div><div>This paper has proposed a novel radiation effects modeling methodology based on neural networks for InP-based high-electron-mobility transistors (HEMTs). 2 MeV proton radiation has been performed with dose of 1 × 10<sup>12</sup> H<sup>+</sup>/cm<sup>2</sup>, 5 × 10<sup>12</sup> H<sup>+</sup>/cm<sup>2</sup>, 1 × 10<sup>13</sup> H<sup>+</sup>/cm<sup>2</sup>, 5 × 10<sup>13</sup> H<sup>+</sup>/cm<sup>2</sup>, 1 × 10<sup>14</sup> H<sup>+</sup>/cm<sup>2</sup>. The radiation neural network models were comparatively constructed based on Feedforward Neural Network (FNN), Recurrent Neural Network (RNN), and Long Short-Term Memory (LSTM). Results indicate that the LSTM network outperforms the FNN and RNN networks in the modeling for both drain-source current (<em>I</em><sub>DS</sub>) and S-parameters, which demonstrates superior prediction accuracy with smaller fitting error. The proposed modeling approach offers an accurate characterization for the radiation effects of InP-based HEMT devices, without the need to consider the complex degradation process associated with radiation, thus providing practical guidelines for the space applications of such devices.</div></div>","PeriodicalId":49818,"journal":{"name":"Microelectronics Journal","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radiation effects modeling of InP-based HEMT based on neural networks\",\"authors\":\"Y.H. Zhong ,&nbsp;X.L. Han ,&nbsp;H.Q. Yun ,&nbsp;B. Mei ,&nbsp;Y.B. Su ,&nbsp;Z. Jin ,&nbsp;C. Zhang\",\"doi\":\"10.1016/j.mejo.2024.106414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper has proposed a novel radiation effects modeling methodology based on neural networks for InP-based high-electron-mobility transistors (HEMTs). 2 MeV proton radiation has been performed with dose of 1 × 10<sup>12</sup> H<sup>+</sup>/cm<sup>2</sup>, 5 × 10<sup>12</sup> H<sup>+</sup>/cm<sup>2</sup>, 1 × 10<sup>13</sup> H<sup>+</sup>/cm<sup>2</sup>, 5 × 10<sup>13</sup> H<sup>+</sup>/cm<sup>2</sup>, 1 × 10<sup>14</sup> H<sup>+</sup>/cm<sup>2</sup>. The radiation neural network models were comparatively constructed based on Feedforward Neural Network (FNN), Recurrent Neural Network (RNN), and Long Short-Term Memory (LSTM). Results indicate that the LSTM network outperforms the FNN and RNN networks in the modeling for both drain-source current (<em>I</em><sub>DS</sub>) and S-parameters, which demonstrates superior prediction accuracy with smaller fitting error. The proposed modeling approach offers an accurate characterization for the radiation effects of InP-based HEMT devices, without the need to consider the complex degradation process associated with radiation, thus providing practical guidelines for the space applications of such devices.</div></div>\",\"PeriodicalId\":49818,\"journal\":{\"name\":\"Microelectronics Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microelectronics Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1879239124001188\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1879239124001188","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文针对基于 InP 的高电子迁移率晶体管 (HEMT) 提出了一种基于神经网络的新型辐射效应建模方法。2 MeV 质子辐射的剂量分别为 1 × 1012 H+/cm2、5 × 1012 H+/cm2、1 × 1013 H+/cm2、5 × 1013 H+/cm2、1 × 1014 H+/cm2。比较构建了基于前馈神经网络(FNN)、循环神经网络(RNN)和长短期记忆(LSTM)的辐射神经网络模型。结果表明,在漏极-源极电流 (IDS) 和 S 参数的建模中,LSTM 网络优于 FNN 和 RNN 网络,其预测精度更高,拟合误差更小。所提出的建模方法可准确描述基于 InP 的 HEMT 器件的辐射效应,而无需考虑与辐射相关的复杂降解过程,从而为此类器件的空间应用提供了实用指南。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Radiation effects modeling of InP-based HEMT based on neural networks
This paper has proposed a novel radiation effects modeling methodology based on neural networks for InP-based high-electron-mobility transistors (HEMTs). 2 MeV proton radiation has been performed with dose of 1 × 1012 H+/cm2, 5 × 1012 H+/cm2, 1 × 1013 H+/cm2, 5 × 1013 H+/cm2, 1 × 1014 H+/cm2. The radiation neural network models were comparatively constructed based on Feedforward Neural Network (FNN), Recurrent Neural Network (RNN), and Long Short-Term Memory (LSTM). Results indicate that the LSTM network outperforms the FNN and RNN networks in the modeling for both drain-source current (IDS) and S-parameters, which demonstrates superior prediction accuracy with smaller fitting error. The proposed modeling approach offers an accurate characterization for the radiation effects of InP-based HEMT devices, without the need to consider the complex degradation process associated with radiation, thus providing practical guidelines for the space applications of such devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microelectronics Journal
Microelectronics Journal 工程技术-工程:电子与电气
CiteScore
4.00
自引率
27.30%
发文量
222
审稿时长
43 days
期刊介绍: Published since 1969, the Microelectronics Journal is an international forum for the dissemination of research and applications of microelectronic systems, circuits, and emerging technologies. Papers published in the Microelectronics Journal have undergone peer review to ensure originality, relevance, and timeliness. The journal thus provides a worldwide, regular, and comprehensive update on microelectronic circuits and systems. The Microelectronics Journal invites papers describing significant research and applications in all of the areas listed below. Comprehensive review/survey papers covering recent developments will also be considered. The Microelectronics Journal covers circuits and systems. This topic includes but is not limited to: Analog, digital, mixed, and RF circuits and related design methodologies; Logic, architectural, and system level synthesis; Testing, design for testability, built-in self-test; Area, power, and thermal analysis and design; Mixed-domain simulation and design; Embedded systems; Non-von Neumann computing and related technologies and circuits; Design and test of high complexity systems integration; SoC, NoC, SIP, and NIP design and test; 3-D integration design and analysis; Emerging device technologies and circuits, such as FinFETs, SETs, spintronics, SFQ, MTJ, etc. Application aspects such as signal and image processing including circuits for cryptography, sensors, and actuators including sensor networks, reliability and quality issues, and economic models are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信