四曲面问题的线性边缘有限元法

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Chao Wang , Jintao Cui , Zhengjia Sun
{"title":"四曲面问题的线性边缘有限元法","authors":"Chao Wang ,&nbsp;Jintao Cui ,&nbsp;Zhengjia Sun","doi":"10.1016/j.camwa.2024.09.015","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we explore for the application of a linear edge finite element method for the numerical solution of a quad-curl problem. We carefully construct a curl recovery operator, which serves to approximate the second order curl of the linear edge element function. The proposed scheme is creatively designed by integrating the constructed operator with the standard Ritz-Galerkin methods in a straightforward manner. We provide proof that the numerical solution derived from our proposed method converges optimally to the exact solution in both <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and <span><math><mi>H</mi><mo>(</mo><mtext>curl</mtext><mo>,</mo><mi>Ω</mi><mo>)</mo></math></span> norms. Our analysis uncovers several intriguing properties of the curl recovery operator. To demonstrate the optimal convergence of our scheme, we construct a series of numerical experiments. The results provide compelling evidence of the effectiveness of our approach.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A linear edge finite element method for quad-curl problem\",\"authors\":\"Chao Wang ,&nbsp;Jintao Cui ,&nbsp;Zhengjia Sun\",\"doi\":\"10.1016/j.camwa.2024.09.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, we explore for the application of a linear edge finite element method for the numerical solution of a quad-curl problem. We carefully construct a curl recovery operator, which serves to approximate the second order curl of the linear edge element function. The proposed scheme is creatively designed by integrating the constructed operator with the standard Ritz-Galerkin methods in a straightforward manner. We provide proof that the numerical solution derived from our proposed method converges optimally to the exact solution in both <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and <span><math><mi>H</mi><mo>(</mo><mtext>curl</mtext><mo>,</mo><mi>Ω</mi><mo>)</mo></math></span> norms. Our analysis uncovers several intriguing properties of the curl recovery operator. To demonstrate the optimal convergence of our scheme, we construct a series of numerical experiments. The results provide compelling evidence of the effectiveness of our approach.</div></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898122124004267\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122124004267","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们探索了线性边缘有限元方法在四曲面问题数值求解中的应用。我们精心构建了一个卷曲恢复算子,用于近似线性边缘元素函数的二阶卷曲。通过将所构建的算子与标准 Ritz-Galerkin 方法直接集成,创造性地设计了所提出的方案。我们证明,从我们提出的方法中得出的数值解在 L2 和 H(curl,Ω) 规范下都以最佳方式收敛于精确解。我们的分析揭示了卷曲恢复算子的几个有趣特性。为了证明我们方案的最佳收敛性,我们构建了一系列数值实验。结果令人信服地证明了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A linear edge finite element method for quad-curl problem
In this study, we explore for the application of a linear edge finite element method for the numerical solution of a quad-curl problem. We carefully construct a curl recovery operator, which serves to approximate the second order curl of the linear edge element function. The proposed scheme is creatively designed by integrating the constructed operator with the standard Ritz-Galerkin methods in a straightforward manner. We provide proof that the numerical solution derived from our proposed method converges optimally to the exact solution in both L2 and H(curl,Ω) norms. Our analysis uncovers several intriguing properties of the curl recovery operator. To demonstrate the optimal convergence of our scheme, we construct a series of numerical experiments. The results provide compelling evidence of the effectiveness of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信