{"title":"疏水和化学键合 BNNSs@PDA/ODA 纳米片增强 2024 铝合金上硅环氧涂层的保护性能","authors":"Rongcao Yu, Zhihai Lin, Minglong Luo, Bing Lei, Fengyuan Shu, Xin Yuan","doi":"10.1016/j.coco.2024.102096","DOIUrl":null,"url":null,"abstract":"<div><div>In the challenging marine environment, organic coatings often fail to provide long-lasting protection. This study presents a novel approach for synthesizing multifunctional nano-pigments by utilizing hydrophobic and chemically bonded BNNSs@PDA/ODA nanosheets. The synthesis involves anchoring polydopamine (PDA) onto boron nitride nanosheets (BNNSs), followed by grafting octadecyl amine (ODA). This dual modification effectively prevents agglomeration of BNNSs and enhances their adhesion with silicone-epoxy resins at the interface. Comprehensive characterization confirms the successful grafting of ODA onto PDA-modified BN nanosheets, significantly improving the barrier properties of coatings. Remarkably, after immersing in a 3.5 wt% NaCl solution for 75 days, the composite coating BNNSs@PDA/ODA-SE exhibits an impedance modulus (|Z|<sub>0.01Hz</sub>) of 10<sup>10</sup> Ω cm<sup>2</sup> at low frequency, surpassing that of pure SE coating by nearly three orders of magnitude. The superior protective performance of the composite coating can be attributed to the synergistic effect between the physical barrier generated by BNNSs, insoluble complexes formed by Al<sup>3+</sup>-PDA, and the high hydrophobic surface network provided by ODA.</div></div>","PeriodicalId":10533,"journal":{"name":"Composites Communications","volume":"51 ","pages":"Article 102096"},"PeriodicalIF":6.5000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrophobic and chemically bonded BNNSs@PDA/ODA nanosheets to enhance the protective properties of silicone-epoxy coatings on 2024 Al-alloy\",\"authors\":\"Rongcao Yu, Zhihai Lin, Minglong Luo, Bing Lei, Fengyuan Shu, Xin Yuan\",\"doi\":\"10.1016/j.coco.2024.102096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the challenging marine environment, organic coatings often fail to provide long-lasting protection. This study presents a novel approach for synthesizing multifunctional nano-pigments by utilizing hydrophobic and chemically bonded BNNSs@PDA/ODA nanosheets. The synthesis involves anchoring polydopamine (PDA) onto boron nitride nanosheets (BNNSs), followed by grafting octadecyl amine (ODA). This dual modification effectively prevents agglomeration of BNNSs and enhances their adhesion with silicone-epoxy resins at the interface. Comprehensive characterization confirms the successful grafting of ODA onto PDA-modified BN nanosheets, significantly improving the barrier properties of coatings. Remarkably, after immersing in a 3.5 wt% NaCl solution for 75 days, the composite coating BNNSs@PDA/ODA-SE exhibits an impedance modulus (|Z|<sub>0.01Hz</sub>) of 10<sup>10</sup> Ω cm<sup>2</sup> at low frequency, surpassing that of pure SE coating by nearly three orders of magnitude. The superior protective performance of the composite coating can be attributed to the synergistic effect between the physical barrier generated by BNNSs, insoluble complexes formed by Al<sup>3+</sup>-PDA, and the high hydrophobic surface network provided by ODA.</div></div>\",\"PeriodicalId\":10533,\"journal\":{\"name\":\"Composites Communications\",\"volume\":\"51 \",\"pages\":\"Article 102096\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Communications\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452213924002870\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Communications","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452213924002870","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Hydrophobic and chemically bonded BNNSs@PDA/ODA nanosheets to enhance the protective properties of silicone-epoxy coatings on 2024 Al-alloy
In the challenging marine environment, organic coatings often fail to provide long-lasting protection. This study presents a novel approach for synthesizing multifunctional nano-pigments by utilizing hydrophobic and chemically bonded BNNSs@PDA/ODA nanosheets. The synthesis involves anchoring polydopamine (PDA) onto boron nitride nanosheets (BNNSs), followed by grafting octadecyl amine (ODA). This dual modification effectively prevents agglomeration of BNNSs and enhances their adhesion with silicone-epoxy resins at the interface. Comprehensive characterization confirms the successful grafting of ODA onto PDA-modified BN nanosheets, significantly improving the barrier properties of coatings. Remarkably, after immersing in a 3.5 wt% NaCl solution for 75 days, the composite coating BNNSs@PDA/ODA-SE exhibits an impedance modulus (|Z|0.01Hz) of 1010 Ω cm2 at low frequency, surpassing that of pure SE coating by nearly three orders of magnitude. The superior protective performance of the composite coating can be attributed to the synergistic effect between the physical barrier generated by BNNSs, insoluble complexes formed by Al3+-PDA, and the high hydrophobic surface network provided by ODA.
期刊介绍:
Composites Communications (Compos. Commun.) is a peer-reviewed journal publishing short communications and letters on the latest advances in composites science and technology. With a rapid review and publication process, its goal is to disseminate new knowledge promptly within the composites community. The journal welcomes manuscripts presenting creative concepts and new findings in design, state-of-the-art approaches in processing, synthesis, characterization, and mechanics modeling. In addition to traditional fiber-/particulate-reinforced engineering composites, it encourages submissions on composites with exceptional physical, mechanical, and fracture properties, as well as those with unique functions and significant application potential. This includes biomimetic and bio-inspired composites for biomedical applications, functional nano-composites for thermal management and energy applications, and composites designed for extreme service environments.